【題目】星期天,小強(qiáng)騎自行車到效外與同學(xué)一起游玩.從家出發(fā)2小時到達(dá)目的地,游玩3小時后按原路以原速返回,小強(qiáng)離家4小時40分鐘后,媽媽駕車沿相同路線迎接小強(qiáng),如圖是他們離家的路程y(千米)與時間x(時)的函數(shù)圖象.已知小強(qiáng)騎車的速度為15千米/時,媽媽駕車的速度為60千米/時.

1)小強(qiáng)家與游玩地的距離是多少?

2)媽媽出發(fā)多長時間與小強(qiáng)相遇?

【答案】130千米;(2 小時(或28分鐘)

【解析】

1)利用路程=速度×時間計(jì)算即可;

2)先利用待定系數(shù)法分別求出直線CD、BD的解析式,聯(lián)立方程組即可求得交點(diǎn)橫坐標(biāo),即為相遇的時間,減去媽媽出發(fā)時小強(qiáng)離家的時間即為所求.

解:(1)小強(qiáng)家與游玩地的距離是15×2=30,

即小強(qiáng)家與游玩地的距離為30千米;

2)∵小強(qiáng)騎車的速度為15千米/時,媽媽駕車的速度為60千米/時.

∴設(shè)yOA15x,yBD=﹣15x+b1yCD60x+b2,

∵點(diǎn)B5,30),點(diǎn)C0),

30=﹣15×5+b1,

解得b1105

060×+b2,

解得b2=﹣280

yBD=﹣15x+105,yCD60x280,相遇即為﹣15x+10560x280,

解得x5,

54小時(即28分鐘).

或設(shè)媽媽出發(fā)x時間與小強(qiáng)相遇,則

60x+15x)=30

解得x(即28分鐘).

即媽媽出發(fā)28分鐘與小強(qiáng)相遇.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的三個頂點(diǎn)A,B,D在坐標(biāo)軸上,且已知點(diǎn)A,),點(diǎn)B,),現(xiàn)有拋物線m經(jīng)過點(diǎn)B,COD的中點(diǎn).

1)求拋物線m的解析式;

2)在拋物線上是否存在點(diǎn)P,使得?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由;

3)拋物線mx軸的另一交點(diǎn)為FM是線段AC上一動點(diǎn),求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形的頂點(diǎn),點(diǎn),反比例函數(shù)

(1)如圖1,雙曲線經(jīng)過點(diǎn)時求反比例函數(shù)的關(guān)系式;

 

(2)如圖2,正方形向下平移得到正方形軸上,反比例函數(shù)的圖象分別交正方形的邊、邊于點(diǎn)

①求的面積;

②如圖3,軸上一點(diǎn),是否存在是等腰三角形,若存在直接寫出點(diǎn)坐標(biāo),若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班為推薦選手參加學(xué)校舉辦的祖國在我心中演講比賽活動,先在班級中進(jìn)行預(yù)賽,班主任根據(jù)學(xué)生的成績從高到低劃分為A,B,C,D四個等級,并繪制了不完整的兩種統(tǒng)計(jì)圖表.請根據(jù)圖中提供的信息,回答下列問題:

1a的值為

2)求C等級對應(yīng)扇形的圓心角的度數(shù);

3)獲得A等級的4名學(xué)生中恰好有13女,該班將從中隨機(jī)選取2人,參加學(xué)校舉辦的演講比賽,請利用列表法或畫樹狀圖法,求恰好選中一男一女參加比賽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸交于兩點(diǎn),是以點(diǎn)為圓心,2為半徑的圓上的動點(diǎn),是線段的中點(diǎn),連結(jié).則線段的最大值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,AB=4,BC=2,正方形ADEF的邊長為2F、A、B在同一直線上,正方形ADEF向右平移到點(diǎn)FB重合,點(diǎn)F的平移距離為x,平移過程中兩圖重疊部分的面積為y,則yx的關(guān)系的函數(shù)圖象表示正確的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于點(diǎn)A和點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)B坐標(biāo)為(40),點(diǎn)C坐標(biāo)為(0,4),點(diǎn)D是拋物線的頂點(diǎn),過點(diǎn)Dx軸的垂線,垂足為E,連接BD

(1)求拋物線的解析式及點(diǎn)D的坐標(biāo);

(2)點(diǎn)F是拋物線上的動點(diǎn),當(dāng)∠FBA=2BDE時,求點(diǎn)F的坐標(biāo);

(3)若點(diǎn)Px軸上方拋物線上的動點(diǎn),以PB為邊作正方形PBGH,隨著點(diǎn)P的運(yùn)動,正方形的大小、位置也隨著改變,當(dāng)頂點(diǎn)GH恰好落在y軸上時,請直接寫出點(diǎn)P的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017江西省)如圖1,研究發(fā)現(xiàn),科學(xué)使用電腦時,望向熒光屏幕畫面的視線角”α約為20°,而當(dāng)手指接觸鍵盤時,肘部形成的手肘角”β約為100°.圖2是其側(cè)面簡化示意圖,其中視線AB水平,且與屏幕BC垂直.

(1)若屏幕上下寬BC=20cm,科學(xué)使用電腦時,求眼睛與屏幕的最短距離AB的長;

(2)若肩膀到水平地面的距離DG=100cm,上臂DE=30cm,下臂EF水平放置在鍵盤上,其到地面的距離FH=72cm.請判斷此時β是否符合科學(xué)要求的100°?

(參考數(shù)據(jù):sin69°≈,cos21°≈,tan20°≈,tan43°≈,所有結(jié)果精確到個位)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形對角線交于點(diǎn)邊分別為邊長作正方形正方形,連接

1)求證:;

2)若,請求出的面積.

查看答案和解析>>

同步練習(xí)冊答案