【題目】如圖,△ABC中,點(diǎn)EBC邊上.AE=AB,將線(xiàn)段AC繞點(diǎn)A旋轉(zhuǎn)到AF的位置.使得∠CAF=BAE.連接EF,EFAC交于點(diǎn)G

(1)求證:EF =BC

(2)若∠ABC=65°,∠ACB=28°,求∠FGC的度數(shù).

【答案】(1)詳見(jiàn)解析;(2)78°.

【解析】

1)由旋轉(zhuǎn)的性質(zhì)可得AC=AF,利用SAS證明ABC≌△AEF,根據(jù)全等三角形的對(duì)應(yīng)邊相等即可得出EF=BC;

2)根據(jù)等腰三角形的性質(zhì)以及三角形內(nèi)角和定理求出∠BAE=180°-65°×2=50°,那么∠FAG=50°.由ABC≌△AEF,得出∠F=C=28°,再根據(jù)三角形外角的性質(zhì)即可求出∠FGC=FAG+F=78°

1)證明:∵∠CAF=BAE

∴∠BAC=EAF

∵將線(xiàn)段ACA點(diǎn)旋轉(zhuǎn)到AF的位置,

AC=AF

ABCAEF中,

∴△ABC≌△AEFSAS),

EF=BC;

2)解:∵AB=AE,∠ABC=65°,

∴∠BAE=180°-65°×2=50°

∴∠FAG=BAE=50°

∵△ABC≌△AEF,

∴∠F=C=28°

∴∠FGC=FAG+F=50°+28°=78°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】重慶市旅游文化商店自制了一款文化衫,每件成本價(jià)為20元,每天銷(xiāo)售150件:

(1)若要每天的利潤(rùn)不低于2250元,則銷(xiāo)售單價(jià)至少為多少元?

(2)為了回饋廣大游客,同時(shí)也為了提高這種文化衫的認(rèn)知度,商店決定在五一節(jié)當(dāng)天開(kāi)展促銷(xiāo)活動(dòng),若銷(xiāo)售單價(jià)在(1)中的最低銷(xiāo)售價(jià)的基礎(chǔ)上再降低m%,則日銷(xiāo)售量可以在150件基礎(chǔ)上增加m件,結(jié)果當(dāng)天的銷(xiāo)售額達(dá)到5670元;要使銷(xiāo)售量盡可能大,求出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=6,AD=8,點(diǎn)PBC中點(diǎn),點(diǎn)E、F是邊CD上的任意兩點(diǎn),且EF=2,當(dāng)四邊形APEF的周長(zhǎng)最小時(shí),則DF的長(zhǎng)為(  )

A. 2 B. 4 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在BDE中,∠BDE=90°,BD=4,點(diǎn)D的坐標(biāo)是(5,0),BDO=15°,將BDE旋轉(zhuǎn)到ABC的位置,點(diǎn)CBD 上,則旋轉(zhuǎn)中心的坐標(biāo)為_______ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠A=36°,將ABC繞平面中的某一點(diǎn)D按順時(shí)針?lè)较蛐D(zhuǎn)一定角度得到

(1)若旋轉(zhuǎn)后的圖形如圖所示,請(qǐng)?jiān)趫D中用尺規(guī)作出點(diǎn)D,請(qǐng)保留作圖痕跡,不要求寫(xiě)作法;

(2)若將ABC按順時(shí)針?lè)较蛐D(zhuǎn)到 的旋轉(zhuǎn)角度為(0°<<180°),且AC ,直接寫(xiě)出旋轉(zhuǎn)角度的值為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過(guò)點(diǎn)(﹣1,0),對(duì)稱(chēng)軸為直線(xiàn)x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點(diǎn)A(﹣3,y1)、點(diǎn)B(﹣,y2)、點(diǎn)C(,y3)在該函數(shù)圖象上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣1<5<x2.其中正確的結(jié)論有( 。

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(2,9),與y軸交于點(diǎn)A(0,5),與x軸交于點(diǎn)E、B.

(1)求二次函數(shù)y=ax2+bx+c的表達(dá)式;

(2)過(guò)點(diǎn)AAC平行于x軸,交拋物線(xiàn)于點(diǎn)C,點(diǎn)P為拋物線(xiàn)上的一點(diǎn)(點(diǎn)PAC上方),作PD平行于y軸交AB于點(diǎn)D,問(wèn)當(dāng)點(diǎn)P在何位置時(shí),四邊形APCD的面積最大?并求出最大面積;

(3)若點(diǎn)M在拋物線(xiàn)上,點(diǎn)N在其對(duì)稱(chēng)軸上,使得以A、E、N、M為頂點(diǎn)的四邊形是平行四邊形,且AE為其一邊,求點(diǎn)M、N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā)沿邊AC向點(diǎn)C1cm/s的速度移動(dòng),點(diǎn)QC點(diǎn)出發(fā)沿CB邊向點(diǎn)B2cm/s的速度移動(dòng).
1)如果P、Q同時(shí)出發(fā),幾秒鐘后,可使△PCQ的面積為8cm2?
2)點(diǎn)P、Q在移動(dòng)過(guò)程中,是否存在某一時(shí)刻,使得△PCQ的面積等于△ABC的面積的一半?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)口袋中有3個(gè)大小相同的小球,球面上分別寫(xiě)有數(shù)字1、2、3.從袋中隨機(jī)地摸出一個(gè)小球,記錄下數(shù)字后放回,再隨機(jī)地摸出一個(gè)小球.

1)請(qǐng)用樹(shù)形圖或列表法中的一種,列舉出兩次摸出的球上數(shù)字的所有可能結(jié)果;

2)求兩次摸出的球上的數(shù)字和為偶數(shù)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案