【題目】如圖,數(shù)學(xué)實(shí)踐活動(dòng)小組要測(cè)量學(xué)校附近樓房CD的高度,在水平地面A處安置測(cè)傾器測(cè)得樓房CD頂部點(diǎn)D的仰角為45°,向前走20米到達(dá)A′處,測(cè)得點(diǎn)D的仰角為67.5°,已知測(cè)傾器AB的高度為1.6米,則樓房CD的高度約為(結(jié)果精確到0.1米, ≈1.414)( )

A.34.14米
B.34.1米
C.35.7米
D.35.74米

【答案】C
【解析】解:過(guò)B作BF⊥CD于F,作B′E⊥BD,

∵∠BDB'=∠B'DC=22.5°,
∴EB'=B'C,
∵∠BEB′=45°,
∴EB′=B′F=10√2,
∴DF=20+10√2,
∴DC=DF+FC=20+10√2+1.6≈35.74=35.7,
所以答案是:C,
【考點(diǎn)精析】根據(jù)題目的已知條件,利用關(guān)于仰角俯角問(wèn)題的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從D點(diǎn)正上方2m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿(mǎn)足關(guān)系式y(tǒng)=a(x﹣k)2+h.已知球與D點(diǎn)的水平距離為6m時(shí),達(dá)到最高2.6m,球網(wǎng)與D點(diǎn)的水平距離為9m.高度為2.43m,球場(chǎng)的邊界距O點(diǎn)的水平距離為18m,則下列判斷正確的是( )

A.球不會(huì)過(guò)網(wǎng)
B.球會(huì)過(guò)球網(wǎng)但不會(huì)出界
C.球會(huì)過(guò)球網(wǎng)并會(huì)出界
D.無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義一種對(duì)正整數(shù)n“F”運(yùn)算:①當(dāng)n為奇數(shù)時(shí),F(n)=3n+1;②當(dāng)n為偶數(shù)時(shí),F(n)=(其中k是使F(n)為奇數(shù)的正整數(shù))……,兩種運(yùn)算交替重復(fù)進(jìn)行,例如,取n=24,則:

n=13,則第2018“F”運(yùn)算的結(jié)果是( 。

A. 1 B. 4 C. 2018 D. 42018

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(背景知識(shí))研究平面直角坐標(biāo)系,我們可以發(fā)現(xiàn)一條重要的規(guī)律:若平面直角坐標(biāo)系上有兩個(gè)不同的點(diǎn)、,則線段AB的中點(diǎn)坐標(biāo)可以表示為

(簡(jiǎn)單應(yīng)用)如圖1,直線ABy軸交于點(diǎn),與x軸交于點(diǎn),過(guò)原點(diǎn)O的直線L分成面積相等的兩部分,請(qǐng)求出直線L的解析式;

(探究升級(jí))小明發(fā)現(xiàn)若四邊形一條對(duì)角線平分四邊形的面積,則這條對(duì)角線必經(jīng)過(guò)另一條對(duì)角線的中點(diǎn)

如圖2,在四邊形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,試說(shuō)明;

(綜合運(yùn)用)如圖3,在平面直角坐標(biāo)系中,,,若OC恰好平分四邊形OACB的面積,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:射線PO與⊙O交于A、B兩點(diǎn),PC、PD分別切⊙O于點(diǎn)C、D.

(1)請(qǐng)寫(xiě)出兩個(gè)不同類(lèi)型的正確結(jié)論;
(2)若CD=12,tan∠CPO= ,求PO的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖1,點(diǎn)GBC的中點(diǎn),點(diǎn)HAF上,動(dòng)點(diǎn)P以每秒2cm的速度沿圖1的邊線運(yùn)動(dòng),運(yùn)動(dòng)路徑為:GCDEFH,相應(yīng)的△ABP的面積ycm2)關(guān)于運(yùn)動(dòng)時(shí)間ts)的函數(shù)圖象如圖2,若AB=6cm,則下列四個(gè)結(jié)論中正確的個(gè)數(shù)有( 。

①圖1中的BC長(zhǎng)是8cm ②圖2中的M點(diǎn)表示第4秒時(shí)y的值為24cm2,

③圖1中的CD長(zhǎng)是4cm ④圖2中的N點(diǎn)表示第12秒時(shí)y的值為18cm2

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】完成下列填空.

如圖,已知∠B+BCD=180°,∠B=D.求證:∠E=DFE.

證明:∵∠B+BCD=180°(已知),

ABCD .

∴∠B=DCE .

又∵∠B=D(已知 ,

___________ ( 等量代換 ).

ADBE(內(nèi)錯(cuò)角相等,兩直線平行)

∴∠E=DFE .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠AOB90°,OC為一條射線,OEOF分別平分∠AOC,∠BOC,那么∠EOF 的度數(shù)為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,已知∠1+2=180°,∠2=B,試說(shuō)明∠DEC+C=180°,請(qǐng)完成下列填空:

證明:∵∠1+2=180°(已知)

__________(____________________)

______=EFC(____________________)

又∵2=B(已知)

∴∠2=______(等量代換)

___________(內(nèi)錯(cuò)角相等,兩直線平行)

∴∠DEC+C=180°(兩直線平行,同旁?xún)?nèi)角互補(bǔ))

查看答案和解析>>

同步練習(xí)冊(cè)答案