如圖,已知邊長(zhǎng)為4的正方形ABCD,E是BC邊上一動(dòng)點(diǎn)(與B、C不重合),連結(jié)AE,作EF⊥AE交∠BCD的外角平分線于F,設(shè)BE=x,△ECF的面積為y,下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是(   )

A.          B.
C.        D.
B.

試題分析:如圖,過點(diǎn)E作EH⊥BC于點(diǎn)H,
∵四邊形ABCD是正方形,∴∠DCH=90°.
∵CE平分∠DCH,∴∠ECH=∠DCH=45°.
∵∠H=90°,∴∠ECH=∠CEH=45°.∴EH=CH.
∵四邊形ABCD是正方形,AP⊥EP,∴∠B=∠H=∠APE=90°.
∴∠BAP+∠APB=90°,∠APB+∠EPH=90°.∴∠BAP=∠EPH.
∵∠B=∠H=90°,∴△BAP∽△HPE. ∴,即.∴EH=x.
,它的圖象是拋物線的一部分.
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線與拋物線交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為-8.
(1)求該拋物線的解析式;
(2)點(diǎn)P是直線AB上方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線,垂足為C,交直線AB于點(diǎn)D,作PE⊥AB于點(diǎn)E.
①設(shè)△PDE的周長(zhǎng)為l,點(diǎn)P的橫坐標(biāo)為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值;
②連接PA,以PA為邊作圖示一側(cè)的正方形APFG.隨著點(diǎn)P的運(yùn)動(dòng),正方形的大小、位置也隨之改變.當(dāng)頂點(diǎn)F或G恰好落在y軸上時(shí),直接寫出對(duì)應(yīng)的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知兩點(diǎn)A(-1,0),B(4,0),以AB為直徑的半圓P交y軸于點(diǎn)C.
(1)求經(jīng)過A、B、C三點(diǎn)的拋物線的解析式;
(2)設(shè)弦AC的垂直平分線交OC于D,連接AD并延長(zhǎng)交半圓P于點(diǎn)E,相等嗎?請(qǐng)證明你的結(jié)論;
(3)設(shè)點(diǎn)M為x軸負(fù)半軸上一點(diǎn),OM=AE,是否存在過點(diǎn)M的直線,使該直線與(1)中所得的拋物線的兩個(gè)交點(diǎn)到y(tǒng)軸的距離相等?若存在,求出這條直線對(duì)應(yīng)函數(shù)的解析式;若不存在.請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,△ABC的邊AB在x軸上,∠ABC=90°,AB=BC,OA=1,OB=4,拋物線經(jīng)過A、C兩點(diǎn).
(1)求拋物線的解析式及其頂點(diǎn)坐標(biāo);
(2)如圖①,點(diǎn)P是拋物線上位于x軸下方的一點(diǎn),點(diǎn)Q與點(diǎn)P關(guān)于拋物線的對(duì)稱軸對(duì)稱,過點(diǎn)P、Q分別向x軸作垂線,垂足為點(diǎn)D、E,記矩形DPQE的周長(zhǎng)為d,求d的最大值,并求出使d最大值時(shí)點(diǎn)P的坐標(biāo);
(3)如圖②,點(diǎn)M是拋物線上位于直線AC下方的一點(diǎn),過點(diǎn)M作MF⊥AC于點(diǎn)F,連接MC,作MN∥BC交直線AC于點(diǎn)N,若MN將△MFC的面積分成2:3兩部分,請(qǐng)確定M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列關(guān)系式錯(cuò)誤的是()
A.a(chǎn)>0B.c>0C.b2-4ac>0D.a(chǎn)+b+c>0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=a(x2-6x+8)(a>0)的圖象與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若S△ABC=8,則過A、B、C三點(diǎn)的圓是否與拋物線有第四個(gè)交點(diǎn)D?若存在,求出D點(diǎn)坐標(biāo);若不存在,說明理由.
(3)將△OAC沿直線AC翻折,點(diǎn)O的對(duì)應(yīng)點(diǎn)為O'.
①若O'落在該拋物線的對(duì)稱軸上,求實(shí)數(shù)a的值;
②是否存在正整數(shù)a,使得點(diǎn)O'落在△ABC的內(nèi)部,若存在,求出整數(shù)a的值;若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

某公司在甲、乙兩地同時(shí)銷售某種品牌的汽車.已知在甲、乙兩地的銷售利潤(rùn)y(單位:萬元)與銷售量x(單位:輛)之間分別滿足:,,若該公司在甲,乙兩地共銷售15輛該品牌的汽車,則能獲得的最大利潤(rùn)為
A.30萬元B.40萬元C.45萬元D.46萬元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,□ABCD中,對(duì)角線BD⊥AB,AB=5,AD邊上的高為.等腰直角△EFG中,EF=4, ∠EGF=45°,且△EFG與□ABCD位于直線AD的同側(cè),點(diǎn)F與點(diǎn)D重合,GF與AD在同一直線上.△EFG從點(diǎn)D出發(fā)以每秒1個(gè)單位的速度沿射線DA方向平移,當(dāng)點(diǎn)G到點(diǎn)A時(shí)停止運(yùn)動(dòng);同時(shí)點(diǎn)P也從點(diǎn)A出發(fā),以每秒3個(gè)單位的速度沿折線AD→DC方向運(yùn)動(dòng),到達(dá)點(diǎn)C時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t.
(1)求的長(zhǎng)度;
(2)在平移的過程中,記相互重疊的面積為,請(qǐng)直接寫出面積與運(yùn)動(dòng)時(shí)間的函數(shù)關(guān)系式,并寫出的取值范圍;
(3)如圖2,在運(yùn)動(dòng)的過程中,若線段與線段交于點(diǎn),連接.是否存在這樣的時(shí)間,使得為等腰三角形?若存在,求出對(duì)應(yīng)的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=3x2向右平移1個(gè)單位,再向下平移2個(gè)單位,所得到的拋物線是(    )
A.           B.
C.             D.

查看答案和解析>>

同步練習(xí)冊(cè)答案