如圖,Rt△BDE中,∠BDE=90°,BC平分∠DBE交DE于點C,AC⊥CB交BE于點A,△ABC的外接圓的半徑為r.
(1)若∠E=30°,求證:BC•BD=r•ED;
(2)若BD=3,DE=4,求AE的長.
(1)證明:取AB中點O,△ABC是Rt△,AB是斜邊,O是外接圓心,連接CO,
∴BO=CO,∠BCO=∠OBC,
∵BC是∠DBE平分線,
∴∠DBC=∠CBA,
∴∠OCB=∠DBC,
∴OCDB,(內錯角相等,兩直線平行),
OC
BD
=
CE
DE
,把比例式化為乘積式得BD•CE=DE•OC,
∵OC=r,
∴BD•CE=DE•r.
∵∠D=90°,∠E=30°,
∴∠DBE=60°,
∴∠CBE=
1
2
∠DBE=30°,
∴∠CBE=∠E,
∴CE=BC,
∴BC•BD=r•ED.

(2)BD=3,DE=4,根據(jù)勾股定理,BE=5,
設圓的半徑長是r,則OC=OA=r,
∵OCDB,
∴△OCEBDE,
OC
BD
=
OE
BE
=
CE
DE
,即
r
3
=
OE
5
=
CE
4

解得:OE=
5
3
r,CE=
4
3
r.
CH=
OC•CE
OE
=
4
5
r,
∵BC平分∠DBE交DE于點C,則△BDC≌△BHC,
∴BH=BD=3,
則HE=2.
∴CD=CH=
4
5
r.
在直角△CHE中,根據(jù)勾股定理得:CH2+EH2=CE2
即(
4
5
r)2+22=(
4
3
r)2,解得:r=
15
8
,
則AE=BE-2r=5-
15
4
=
5
4
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,AB是⊙O的直徑,PB與⊙O相切于B點,C為⊙O上的點,OPAC.試判斷PC與⊙O的位置關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在Rt△ABC中,∠ACB=90°,BD是⊙O的直徑,弦DE與AC交于點E,且BD=BF.
(1)求證:AC是⊙O的切線;
(2)若BC=6,AD=4,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,在直角梯形ABCD中,∠D=∠C=90°,AB=4,BC=6,AD=8,點P、Q同時從A點出發(fā),分別做勻速運動,其中點P沿AB、BC向終點C運動,速度為每秒2個單位,點Q沿AD向終點D運動,速度為每秒1個單位,當這兩點中有一個點到達自己的終點時,另一個點也停止運動,設這兩個點從出發(fā)運動了t秒.
(1)動點P與Q哪一點先到達自己的終點?此時t為何值;
(2)當O<t<2時,寫出△PQA的面積S與時間t的函數(shù)關系式;
(3)以PQ為直徑的圓能否與CD相切?若有可能,求出t的值或t的取值范圍;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,兩個等圓⊙O與⊙O′外切,過點O作⊙O′的兩條切線OA、OB,A、B是切點,則∠AOB=______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

兩個同心圓的半徑分別為3cm和4cm,大圓的弦BC與小圓相切,則BC=______cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,AD平分∠BAC交⊙O于點D,DE⊥AC交AC的延長線于點E,BF⊥AB交AD的延長線于點F,
(1)求證:DE是⊙O的切線;
(2)若DE=3,⊙O的半徑為5,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,以AB為直徑的⊙O交AC于點D,直徑AB左側的半圓上有一點動點E(不與點A、B重合),連結EB、ED.
(1)如果∠CBD=∠E,求證:BC是⊙O的切線;
(2)當點E運動到什么位置時,△EDB≌△ABD,并給予證明;
(3)若tanE=
3
3
,BC=
4
3
3
,求陰影部分的面積.(計算結果精確到0.1)
(參考數(shù)值:π≈3.14,
2
≈1.41,
3
≈1.73)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,PA、PB是⊙O的兩條切線,A、B是切點,連接AB,直線PO交AB于M.請你根據(jù)圓的對稱性,寫出△PAB的三個正確的結論.

查看答案和解析>>

同步練習冊答案