【題目】在平面直角坐標(biāo)系中,我們不妨把橫坐標(biāo)與縱坐標(biāo)相等的點(diǎn)稱為夢(mèng)之點(diǎn),例如,點(diǎn)(1,1),(﹣ 2,﹣ 2),(, ),…,都是夢(mèng)之點(diǎn),顯然夢(mèng)之點(diǎn)有無數(shù)個(gè).
(1)若點(diǎn) P(2,b)是反比例函數(shù) (n 為常數(shù),n ≠ 0) 的圖象上的夢(mèng)之點(diǎn),求這個(gè)反比例函數(shù)解析式;
(2)⊙ O 的半徑是 ,
①求出⊙ O 上的所有夢(mèng)之點(diǎn)的坐標(biāo);
②已知點(diǎn) M(m,3),點(diǎn) Q 是(1)中反比例函數(shù) 圖象上異于點(diǎn) P 的夢(mèng)之點(diǎn),過點(diǎn)Q 的直線 l 與 y 軸交于點(diǎn) A,tan∠OAQ= 1.若在⊙ O 上存在一點(diǎn) N,使得直線 MN ∥ l或 MN ⊥ l,求出 m 的取值范圍.
【答案】(1)反比例函數(shù)解析式為;
(2)①⊙ O 上的所有夢(mèng)之點(diǎn)的坐標(biāo)為(1,1)或(-1,-1);②m 的取值范圍是-5≤m≤-1或1≤m≤5.
【解析】試題分析:(1)由夢(mèng)之點(diǎn)坐標(biāo)特點(diǎn)可得b=2,再將P坐標(biāo)代入中,即可求得n的值;(2)①設(shè)⊙O上夢(mèng)之點(diǎn)坐標(biāo)是(a,a),由圓的半徑是得:
則a=1或a=-1,所以⊙O上所有夢(mèng)之點(diǎn)坐標(biāo)是(1,1)或(-1,-1);② 由(1)可得,異于點(diǎn)P的夢(mèng)之點(diǎn)是(-2,-2),設(shè)直線MN為y=-x+b,求得m的取值范圍;當(dāng)直線MN為y=x+b時(shí),求得m的取值范圍;
試題解析:
解:(1) ∵P(2,b)是夢(mèng)之點(diǎn)
∴b=2
∴P(2,2)
將P(2,2) 代入 中得n=4
∴反比例函數(shù)解析式是
(2) ①∵⊙O的半徑是
設(shè)⊙O上夢(mèng)之點(diǎn)坐標(biāo)是(a,a)
∴
∴
a=1或a=-1
∴⊙O上所有夢(mèng)之點(diǎn)坐標(biāo)是(1,1)或(-1,-1)
②由(1)知,異于點(diǎn)P的夢(mèng)之點(diǎn)是(-2,-2)
∵tan∠OAQ=1
∴∠OAQ==45°
由已知MN∥l或MN⊥l,如圖所示:
∴直線MN為y=-x+b或y=x+b
當(dāng)MN為y=-x+b時(shí),m=b-3
由圖可知,當(dāng)直線MN平移至與⊙O相切時(shí),
且切點(diǎn)在第四 象限時(shí),b取得最小值,
此時(shí)MN 記為 ,
其中 為切點(diǎn), 為直線與y軸的交點(diǎn)。
∵△O 為等要直角三角形,
∴O = ∴O=2
∴b的最小值是-2,
∴m的最小值是-5
當(dāng)直線MN平移至與⊙O相切時(shí),切點(diǎn)在第二象限時(shí),
b取得最大值,此時(shí)MN 記為 ,
其中 為切點(diǎn), 為直線與y軸的交點(diǎn)。
同理可得,b的最大值為2,m的最大值為-1.
∴m的取值范圍為-5≤m≤-1
當(dāng)直線MN為y=x+b時(shí),
同理可得,m的取值范圍為1≤m≤5,
綜上所述,m的取值范圍為-5≤m≤-1或1≤m≤5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若不等式組3<x≤a的整數(shù)解恰有4個(gè),則a的取值范圍是( )
A. a>7B. 7<a<8C. 7≤a<8D. 7<a≤8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李老師為了了解學(xué)生暑期在家的閱讀情況,隨機(jī)調(diào)查了20名學(xué)生某一天的閱讀小時(shí)數(shù),具體情況統(tǒng)計(jì)如下表:
閱讀時(shí)間(小時(shí)) | 2 | 2.5 | 3 | 3.5 | 4 |
學(xué)生人數(shù)(名) | 1 | 2 | 8 | 6 | 3 |
則關(guān)于這20名學(xué)生閱讀小時(shí)數(shù)的說法正確的是( )
A. 中位數(shù)是3 B. 中位數(shù)是3.5 C. 眾數(shù)是8 D. 眾數(shù)是4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一組數(shù)據(jù)為3,5,4,5,6,則這組數(shù)據(jù)的眾數(shù)是( )
A.3B.4C.5D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,如果兩個(gè)三角形全等,則它們面積相等,而兩個(gè)不全等的三角形,在某些情況下,可通過證明等底等高來說明它們的面積相等.已知△ABC與△DEC是等腰直角三角形,∠ACB=∠DCE=90°,連接AD、BE.
(1)如圖1,當(dāng)∠BCE=90°時(shí),求證:S△ACD=S△BCE;
(2)如圖2,當(dāng)0°<∠BCE<90°時(shí),上述結(jié)論是否仍然成立?如果成立,請(qǐng)證明;如果不成立,說明理由.
(3)如圖3,在(2)的基礎(chǔ)上,作CF⊥BE,延長(zhǎng)FC交AD于點(diǎn)G,求證:點(diǎn)G為AD中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一組數(shù)據(jù)5,3,5,6,7,這組數(shù)據(jù)的眾數(shù)為( )
A.3B.6C.5D.7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,AE=CD,AD、BE交于Q點(diǎn),BP⊥AD于P點(diǎn).
求證:
(1)△BAE≌△ACD;
(2)∠BQP=60°;
(3)BQ=2PQ.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com