【題目】有一塊銳角三角形卡紙余料ABC,它的邊BC=120cm,高AD=80cm,為使卡紙余料得到充分利用,現(xiàn)把它裁剪成一個(gè)鄰邊之比為25的矩形紙片EFGH和正方形紙片PMNQ,裁剪時(shí),矩形紙片的較長邊在BC上,正方形紙片一邊在矩形紙片的較長邊EH上,其余頂點(diǎn)均分別在ABAC上,具體裁剪方式如圖所示。

1)求矩形紙片較長邊EH的長;

2)裁剪正方形紙片時(shí),小聰同學(xué)是按以下方法進(jìn)行裁剪的:先沿著剩余料中與邊EH平行的中位線剪一刀,再沿過該中位線兩端點(diǎn)向邊EH所作的垂線剪兩刀,請你通過計(jì)算,判斷小聰?shù)募舴ㄊ欠裾_.

【答案】(1)75(2)小聰?shù)募舴ú徽_

【解析】

1)易證,根據(jù)相似三角形對應(yīng)線段成比例可求得EH長;(2)設(shè)正方形的邊長為a cm,用a的式子表示出AK,根據(jù),對應(yīng)線段成比例可求出a,再求出與邊EH平行的中位線的長,比較可知小聰?shù)臏p法是否正確.

解:(1)記ADPQ,EH的交點(diǎn)分別為點(diǎn)K,R.

設(shè)cm, cm,由矩形的性質(zhì),得,易證,

,即,

解得,cm),∴矩形紙片較長邊EH的長為75cm.

2)小聰?shù)募舴ú徽_.理由如下:

設(shè)正方形的邊長為a cm;,,由題意易得,,∴,即,解得.

與邊EH平行的中位線的長為cm),∵,∴小聰?shù)募舴ú徽_.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2﹣8ax+12a(a<0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),拋物線上另有一點(diǎn)C在第一象限,且使△OCA∽△OBC,

(1)求OC的長及的值;

(2)設(shè)直線BC與y軸交于P點(diǎn),當(dāng)點(diǎn)C恰好在OP的垂直平分線上時(shí),求直線BP和拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形 ABC 中,ACBC13,AB10.以 BC 為直徑作⊙O AB 于點(diǎn) D,交 AC 于點(diǎn) G,DFAC,垂足為 F,交 CB 的延長線于點(diǎn) E

(1)求證:直線 EF 是⊙O 的切線;

(2) sinE 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,都是等腰直角三角形,,的頂點(diǎn)的斜邊的中點(diǎn)重合,將繞點(diǎn)旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段與線段相交于點(diǎn),射線與線段相交于點(diǎn),與射線相交于點(diǎn).

1)求證:;

2)求證:平分;

3)當(dāng),,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用長為22米的籬笆,一面利用墻(墻的最大可用長度為14米),圍成中間隔有一道籬笆的長方形花圃,為了方便出入,在建造籬笆花圃時(shí),在BC上用其他材料做了寬為1米的兩扇小門.

(1)設(shè)花圃的一邊AB長為x米,請你用含x的代數(shù)式表示另一邊AD的長為   米;

(2)若此時(shí)花圃的面積剛好為45m2,求此時(shí)花圃的長與寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,點(diǎn)為邊中點(diǎn),點(diǎn)在線段上運(yùn)動(dòng),點(diǎn)在線段上運(yùn)動(dòng),連接,則周長的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,軸交于兩點(diǎn),與軸交于點(diǎn),且拋物線的對稱軸為直線

1)拋物線的表達(dá)式;

2)若拋物線與拋物線關(guān)于直線對稱,拋物線軸交于點(diǎn)兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),要使,求所有滿足條件的拋物線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一個(gè)矩形紙片OABC放置在平面直角坐標(biāo)系xOy內(nèi),點(diǎn)A6,0),點(diǎn)C04),點(diǎn)O0,0).點(diǎn)P是線段BC上的動(dòng)點(diǎn),將OCP沿OP翻折得到OCP

(Ⅰ)如圖①,當(dāng)點(diǎn)C落在線段AP上時(shí),求點(diǎn)P的坐標(biāo);

(Ⅱ)如圖②,當(dāng)點(diǎn)P為線段BC中點(diǎn)時(shí),求線段BC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC,ABC=90°,AB=BC=,ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°,得到MNC,連接BM,BM的長是__.

查看答案和解析>>

同步練習(xí)冊答案