若a<b<0,那么下列各式正確的是


  1. A.
    a2<b2
  2. B.
    a+b<2b
  3. C.
    a2<ab
  4. D.
    ab<b2
B
分析:分別根據(jù)不等式的基本性質(zhì)對各選項進行逐一分析即可.
解答:A、∵a<b<0,不等式兩邊分別乘以a,b,∴a2>b2,故此選項錯誤;
B、∵a<b<0,不等式兩邊同時加上b,∴a+b<2b,∴故此選項正確;
C、∵a<b<0,不等式兩邊同時乘以a,∴a2>ab,故此選項錯誤;
D、∵a<b<0,不等式兩邊同時乘以b,∴ab>b2,故此選項錯誤.
故選:B.
點評:此題主要考查的是不等式的基本性質(zhì),解答此題的關(guān)鍵注意不等式的兩邊同時乘以或除以一個負數(shù)時,不等號的方向要改變.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點.
(1)請判斷四邊形EFGH的形狀?并說明為什么.
(2)若使四邊形EFGH為正方形,那么四邊形ABCD的對角線應(yīng)具有怎樣的性質(zhì)?
(3)在(2)的條件下,若EF=2,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

5、在一次數(shù)學課上,第一小組做投擲一枚均勻硬幣的實驗,若實驗次數(shù)為50次,那么一定出現(xiàn)的情況是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•黃石)如圖1,點C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點C為線段AB的黃金分割點.某數(shù)學興趣小組在進行課題研究時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.
(1)如圖2,在△ABC中,∠A=36°,AB=AC,∠C的平分線交AB于點D,請問點D是否是AB邊上的黃金分割點,并證明你的結(jié)論;
(2)若△ABC在(1)的條件下,如圖3,請問直線CD是不是△ABC的黃金分割線,并證明你的結(jié)論;
(3)如圖4,在直角梯形ABCD中,∠D=∠C=90°,對角線AC、BD交于點F,延長AB、DC交于點E,連接EF交梯形上、下底于G、H兩點,請問直線GH是不是直角梯形ABCD的黃金分割線,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

若△ABC∽△DEF,它們的周長分別為6cm和8cm,那么下式中一定成立的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)如圖(1),⊙A,⊙B,⊙C兩兩不相交,且半徑都是0.5cm,則圖中三個陰影部分面積之和為
π
8
π
8
cm2
(2)若在(1)的條件下,增加一個圓變成圖(2).設(shè)這四個圓的半徑都是r,則這四個圓中陰影部分面積的和為
πr2
πr2
.并說明理由.
(3)若在(2)中再增加一個圓變成圖(3).設(shè)這五個圓的半徑都是r,則這五個圓中陰影部分的面積和為
3
2
πr2
3
2
πr2
.并說明理由.
(4)若在題(1)的條件下,有n個這樣的半徑都是r的圓(如圖(4)),那么這n個圓中陰影部分的面積的和又為多少呢?請說明理由.

查看答案和解析>>

同步練習冊答案