平行四邊形ABCD中,經(jīng)過對角線交點(diǎn)O的直線分別交AB、CD于點(diǎn)E、F.則圖中全等的三角形共有( )

A.4對
B.5對
C.6對
D.8對
【答案】分析:根據(jù)平行四邊形的性質(zhì)所能得到的相等邊和相等角來判斷圖中有多少全等的三角形.
解答:解:∵四邊形ABCD是平行四邊形,
∴AD=BC,AB=CD,OA=OC,OD=OB;
∠OAB=∠OCD,∠OBD=∠ODC;
①∵AD=BC,AB=CD,BD=BD,
∴△ABD≌△CDB(SSS);同理可證得:△ABC≌△CDA.
②∵OA=OC,OB=OD,AB=CD,
∴△OAB≌△OCD(SSS);同理可證得:△OAD≌△OCB.
③∵OA=OC,∠OAB=∠OCD,∠AOE=∠COF,
∴△AOE≌△COF(ASA);同理可證得:△BOE≌△DOF.
所以圖中共有6對全等三角形.
故選C.
點(diǎn)評:此題主要考查的是平行四邊形的性質(zhì)以及全等三角形的判定,平行四邊形基本性質(zhì):①平行四邊形兩組對邊分別平行;②平行四邊形的兩組對邊分別相等;③平行四邊形的兩組對角分別相等;④平行四邊形的對角線互相平分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,高h(yuǎn)=4,則平行四邊形ABCD的面積S=
12
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,AE:EB=1:2,S△AEF=3,則S△FCD=
27
27

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,E是BD上一點(diǎn),AE的延長線交DC于點(diǎn)F,交BC的延長線于點(diǎn)G.求證:
(1)△ABE∽△FDE;
(2)AE2=EF•EG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,E、F分別是AD、BC的中點(diǎn),AC分別交BE、DF于G、H,下列結(jié)論:
①BE=DF;②AG=GH=HC;③2EG=BG;④S△ABC=5S△AGE;
其中正確的有
①②③④
①②③④
.(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,過點(diǎn)A作AE⊥BC,垂足為E,連接DE,F(xiàn)為線段DE上一點(diǎn),且∠AFE=∠B.
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6
3
,AE=6,求AF的長.

查看答案和解析>>

同步練習(xí)冊答案