如圖所示,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c經(jīng)過A(﹣3,0)、B(1,0)、C(0,3)三點(diǎn),其頂點(diǎn)為D,連接AD,點(diǎn)P是線段AD上一個(gè)動(dòng)點(diǎn)(不與A、D重合),過點(diǎn)P作y軸的垂線,垂足點(diǎn)為E,連接AE.

(1)求拋物線的函數(shù)解析式,并寫出頂點(diǎn)D的坐標(biāo);

(2)如果P點(diǎn)的坐標(biāo)為(x,y),△PAE的面積為S,求S與x之間的函數(shù)關(guān)系式,直接寫出自變量x的取值范圍,并求出S的最大值;

(3)在(2)的條件下,當(dāng)S取到最大值時(shí),過點(diǎn)P作x軸的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點(diǎn)P的對(duì)應(yīng)點(diǎn)為點(diǎn)P′,求出P′的坐標(biāo),并判斷P′是否在該拋物線上.


    解:(1)∵拋物線y=ax2+bx+c經(jīng)過A(﹣3,0)、B(1,0)、C(0,3)三點(diǎn),

,

解得

∴解析式為y=﹣x2﹣2x+3

∵﹣x2﹣2x+3=﹣(x+1)2+4,

∴拋物線頂點(diǎn)坐標(biāo)D為(﹣1,4).

(2)∵A(﹣3,0),D(﹣1,4),

∴設(shè)AD為解析式為y=kx+b,有 ,

解得

∴AD解析式:y=2x+6,

∵P在AD上,

∴P(x,2x+6),

∴S△APE=•PE•yP=•(﹣x)•(2x+6)=﹣x2﹣3x(﹣3<x<﹣1),當(dāng)x=﹣=﹣時(shí),S取最大值

(3)如圖1,設(shè)P′F與y軸交于點(diǎn)N,過P′作P′M⊥y軸于點(diǎn)M,

∵△PEF沿EF翻折得△P′EF,且P(﹣,3),

∴∠PFE=∠P′FE,PF=P′F=3,PE=P′E=,

∵PF∥y軸,

∴∠PFE=∠FEN,

∵∠PFE=∠P′FE,

∴∠FEN=∠P′FE,

∴EN=FN,

設(shè)EN=m,則FN=m,P′N=3﹣m.

在Rt△P′EN中,

∵(3﹣m)2+(2=m2,

∴m=

∵S△P′EN=•P′N•P′E=•EN•P′M,

∴P′M=

在Rt△EMP′中,

∵EM==,

∴OM=EO﹣EM=,

∴P′,).

當(dāng)x=時(shí),y=﹣(2﹣2•+3=,

∴點(diǎn)P′不在該拋物線上.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在正方形ABCD中,對(duì)角線BD的長為.若將BD繞點(diǎn)B旋轉(zhuǎn)后,點(diǎn)D落在BC延長線上的點(diǎn)D′處,點(diǎn)D經(jīng)過的路徑為,則圖中陰影部分的面積是(  )

 

A.

﹣1

B.

C.

D.

π﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


某旅游景點(diǎn)的門票價(jià)格是20元/人,日接待游客500人,進(jìn)入旅游旺季時(shí),景點(diǎn)想提高門票價(jià)格增加盈利.經(jīng)過市場(chǎng)調(diào)查發(fā)現(xiàn),門票價(jià)格每提高5元,日接待游客人數(shù)就會(huì)減少50人. 設(shè)提價(jià)后的門票價(jià)格為x(元/人)(x>20),日接待游客的人數(shù)為y(人).

(1)求y與x(x>20)的函數(shù)關(guān)系式;

(2)已知景點(diǎn)每日的接待成本為z(元),z與y滿足函數(shù)關(guān)系式:z=100+10y.求z與x的函數(shù)關(guān)系式;

(3)在(2)的條件下,當(dāng)門票價(jià)格為多少時(shí),景點(diǎn)每日獲取的利潤最大?最大利潤是多少?(利潤=門票收入-接待成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


函數(shù)的自變量x的取值范圍是 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


解方程:=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


一個(gè)不透明的袋子中有2個(gè)白球,3個(gè)黃球和1個(gè)紅球,這些球除顏色不同外其他完全相同,則從袋子中隨機(jī)摸出一個(gè)球是白球的概率為(  )

   A.               B.               C.               D. 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


把球放在長方體紙盒內(nèi),球的一部分露出盒外,其主視圖如圖.⊙O與矩形ABCD的邊BC,AD分別相切和相交(E,F(xiàn)是交點(diǎn)),已知EF=CD=8,則⊙O的半徑為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


在實(shí)數(shù)范圍內(nèi)有意義,則x的取值范圍是【    】

A.         B.          C.          D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


方程組的解為 

查看答案和解析>>

同步練習(xí)冊(cè)答案