【題目】為選拔參加八年級數(shù)學“拓展性課程”活動人選,數(shù)學李老師對本班甲、乙兩名學生以前經(jīng)歷的10次測驗成績(分)進行了整理、分析(見圖①):

1)寫出ab的值;

2)如要推選1名學生參加,你推薦誰?請說明你推薦的理由.

【答案】1a=84.5b=81;(2)甲,理由:兩人的平均數(shù)相同且甲的方差小于乙,說明甲成績穩(wěn)定.

【解析】

(1)依據(jù)中位數(shù)和眾數(shù)的定義進行計算即可;

(2)依據(jù)平均數(shù)、中位數(shù)、方差以及眾數(shù)的角度分析,即可得到哪個學生的水平較高.

(1)甲組數(shù)據(jù)排序后,最中間的兩個數(shù)據(jù)為:8485,故中位數(shù)a(84+85)=84.5,乙組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)為81,故眾數(shù)b=81;

(2)甲,理由:兩人的平均數(shù)相同且甲的方差小于乙,說明甲成績穩(wěn)定;

或:乙,理由:在90≤x≤100的分數(shù)段中,乙的次數(shù)大于甲.(答案不唯一,理由須支撐推斷結論)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在任意四邊形ABCD中,M,N,P,Q分別是AB,BC,CDDA上的點,對于四邊形MNPQ的形狀,以下結論中,錯誤的是  

A. MN,PQ是各邊中點,四邊MNPQ一定為平行四邊形

B. M,NP,Q是各邊中點,且時,四邊形MNPQ為正方形

C. MN、P,Q是各邊中點,且時,四邊形MNPQ為菱形

D. M,NP、Q是各邊中點,且時,四邊形MNPQ為矩形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面的推理過程,在括號內(nèi)填上推理的依據(jù),如圖:

∵∠1+2=180°,∠2+4=180°(已知)

∴∠1=4( )

ca( )

又∵∠2+3=180°(已知 )

3=6( )

∴∠2+6=180°( )

ab( )

cb( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,∠A是銳角,E為邊AD上一點,△ABE沿著BE折疊,使點A的對應點F恰好落在邊CD上,連接EF,BF,給出下列結論:

①若∠A=70°,則∠ABE=35°;②若點FCD的中點,則SABES菱形ABCD

下列判斷正確的是( 。

A. ①,②都對B. ①,②都錯C. ①對,②錯D. ①錯,②對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知邊長為4cm的正方形ABCD中,點P,Q同時從點A出發(fā),以相同的速度分別沿ABCADC的路線運動,則當PQcm時,點CPQ的距離為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,三角形ABC的頂點坐標分別為,,把三角形ABC向右平移2個單位長度,再向下平移4個單位長度后得到三角形

1)畫出三角形ABC和平移后的圖形;

2)寫出三個頂點,的坐標;

3)求三角形ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形ABCD中,點EBD上一點,過點EEFAE交射線CB于點F,連結CE

1)已知點F在線段BC上.

①若AB=BE,求∠DAE度數(shù);

②求證:CE=EF

2)已知正方形邊長為2,且BC=2BF,請直接寫出線段DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】真假命題的思考.

一天,老師在黑板上寫下了下列三個命題:

①垂直于同一條直線的兩條直線平行;

②若,則

③若的兩邊所在直線分別平行,則.

小明和小麗對話如下,

小明:“命題①是真命題,好像可以證明.”

小麗:“命題①是假命題,好像少了一些條件.”

1)結合小明和小麗的對話,談談你的觀點.如果你認為是真命題,請證明:如果你認為是假命題,請增加一個適當?shù)臈l件,使之成真命題.

2)請在命題②、命題③中選一個,如果你認為它是真命題,請證明:如果你認為它是假命題,請舉出反例.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩直線l1ykx2b+1l2y=(1kx+b1交于x軸上一點A,與y軸分別交于點B、C,若A的橫坐標為2.

1)求這兩條直線的解析式;

2)求ABC的面積.

查看答案和解析>>

同步練習冊答案