【題目】分已知關(guān)于x的一元二次方程(m-2)x2+(2m+1)x+m=0有兩個實(shí)數(shù)根x1,x2

(1)求m的取值范圍.

(2)若|x1|=|x2|,求m的值及方程的根.

【答案】1m≥m≠2;(2.

【解析】試題分析:1)根據(jù)一元二次方程的定義結(jié)合根的判別式,即可得出關(guān)于的一元一次不等式組,解之即可得出的取值范圍;
2可得: 當(dāng)時,利用△=0可求出的值,利用,可求出方程的解;當(dāng)時,由根與系數(shù)的關(guān)系可得出解之即可得出的值,結(jié)合(1)可知此情況不存在.綜上即可得出結(jié)論.

試題解析:(1)∵關(guān)于x的一元二次方程 有兩個實(shí)數(shù)根

解得: m≠2.

(2)可得:

當(dāng),

解得:

此時

當(dāng),

m≠2,

∴此時方程無解.

綜上所述:若,m的值為,方程的根為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,垂足為,直線上一動點(diǎn)(不與點(diǎn)重合),在的右側(cè)作,使得,連接

1)求證:;

2)當(dāng)在線段上時

求證:

,

3)當(dāng)CEAB時,若△ABD中最小角為20°,試探究∠ADB的度數(shù)(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D、E分別在錢段ABAC上,CDBE交于O,已知ABAC,現(xiàn)添加以下的哪個條件仍不能判定ABE≌△ACD

A. B=∠CB. ADAEC. BECDD. BDCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,在一塊寬為12m,長為20m的矩形地面上修筑同樣寬的道路,余下的部分種上草坪.要使草坪的面積為180m2,求道路的寬;

(2)現(xiàn)在對該矩形區(qū)域進(jìn)行改造,如圖2,在正中央建一個與矩形的邊互相平行的正方形觀賞亭,觀賞亭的四邊連接四條與矩形的邊互相平行的且寬度相等的道路,已知道路的寬為正方形邊長的若道路與觀賞亭的面積之和是矩形面積的,求道路的寬

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD 中,點(diǎn)E,O,F分別是邊AB,AC,AD的中點(diǎn),連接CE、CF、OE、OF.當(dāng)ABBC滿足___________條件時,四邊形AEOF正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線AC,BD相交于點(diǎn)O,AOCO,BODO,且∠ABC+ADC180°

1)求證:四邊形ABCD是矩形;

2)若∠ADF:∠FDC32,DFAC,求∠BDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(40,0)和(0,30),動點(diǎn)P從點(diǎn)A開始在線段AO上以每秒2個長度單位的速度向原點(diǎn)O運(yùn)動、動直線EFx軸開始以每秒1個單位的速度向上平行移動(即EF∥x軸),并且分別與y軸、線段AB交于點(diǎn)E、F,連接EP、FP,設(shè)動點(diǎn)P與動直線EF同時出發(fā),運(yùn)動時間為t秒.

(1)求t=15時,△PEF的面積;

(2)直線EF、點(diǎn)P在運(yùn)動過程中,是否存在這樣的t,使得△PEF的面積等于160(平方單位)?若存在,請求出此時t的值;若不存在,請說明理由.

(3)當(dāng)t為何值時,△EOP與△BOA相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B. C重合),以AD為一邊在AD的右側(cè)作△ADE,使AE=AD,∠DAE=BAC.設(shè)∠BAC=α,∠BCE=β.

(1)如圖1,如果∠BAC=90,∠BCE=___度;

(2)如圖2,你認(rèn)為α、β之間有怎樣的數(shù)量關(guān)系?并說明理由。

(3)當(dāng)點(diǎn)D在線段BC的延長線上移動時,α、β之間又有怎樣的數(shù)量關(guān)系?請在備用圖上畫出圖形,并直接寫出你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(慶陽中考)現(xiàn)在的青少年由于沉迷電視、手機(jī)、網(wǎng)絡(luò)游戲等,視力日漸減退,某市為了了解學(xué)生的視力變化情況,從全市九年級隨機(jī)抽取了1 500名學(xué)生,統(tǒng)計了每個人連續(xù)三年視力檢查的結(jié)果,根據(jù)視力在4.9以下的人數(shù)變化制成折線統(tǒng)計圖,并對視力下降的主要因素進(jìn)行調(diào)查,制成扇形統(tǒng)計圖.

解答下列問題:

(1)圖中D所在扇形的圓心角度數(shù)為______;

(2)2016年全市共有30 000名九年級學(xué)生,請你估計視力在4.9以下的學(xué)生約有多少名?

(3)根據(jù)扇形統(tǒng)計圖信息,你覺得中學(xué)生應(yīng)該如何保護(hù)視力?

查看答案和解析>>

同步練習(xí)冊答案