如圖,在直角坐標(biāo)系中,四邊形OABC為矩形,A(8,0),C(0,6),點(diǎn)M是OA的中點(diǎn),P、Q兩點(diǎn)同時(shí)從點(diǎn)M出發(fā),點(diǎn)P沿x軸向右運(yùn)動(dòng);點(diǎn)Q沿x軸先向左運(yùn)動(dòng)至原點(diǎn)O后,再向右運(yùn)動(dòng)到點(diǎn)M停止,點(diǎn)P隨之停止運(yùn)動(dòng).P、Q兩點(diǎn)運(yùn)動(dòng)的速度均為每秒1個(gè)單位.以P精英家教網(wǎng)Q為一邊向上作正方形PRLQ.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),正方形PRLQ與矩形OABC重疊部分(陰影部分)的面積為S(平方單位).
(1)用含t的代數(shù)式表示點(diǎn)P的坐標(biāo);
(2)分別求當(dāng)t=1,t=5時(shí),線段PQ的長(zhǎng);
(3)求S與t之間的函數(shù)關(guān)系式;
(4)連接AC.當(dāng)正方形PRLQ與△ABC的重疊部分為三角形時(shí),直接寫出t的取值范圍.
分析:(1)點(diǎn)P的縱坐標(biāo)一定為0,橫坐標(biāo)再4的基礎(chǔ)上隨時(shí)間的增加每秒增加1個(gè)單位,所以t秒后的坐標(biāo)是(4+t,0);
(2)當(dāng)t<4時(shí),線段PQ的長(zhǎng)為2t,當(dāng)t>4時(shí),線段PQ的長(zhǎng)固定不變是8;
(3)分三種情況討論:當(dāng)t<4時(shí),s=4t2,當(dāng)t=4時(shí),s=48,當(dāng)t>4時(shí),s=(8-t2);
(4)結(jié)合一次函數(shù)與題意直接寫出t的取值范圍.
解答:解:(1)∵M(jìn)P=t,OM=4,
∴OP=t+4,
∴P(t+4,0)(0≤t≤8).
(2)當(dāng)t=1時(shí),PQ=2×1=2.
當(dāng)t=5時(shí),OP=9,OQ=5-4=1,
∴PQ=9-1=8.
(3)如圖①,當(dāng)0≤t≤3時(shí),
∵PQ=2t,
∴S=4t2
如圖②,當(dāng)3<t≤4時(shí),
∵PQ=2t,AB=6,
∴S=12t.
如圖③,當(dāng)4<t≤8時(shí),
∵AQ=4-(t-4)+4=12-t,AB=6,
∴S=-6t+72.
精英家教網(wǎng)
(4)如圖④,當(dāng)點(diǎn)R在AC上時(shí),如圖6,
精英家教網(wǎng)
∵RP∥OC,
∴△APR∽△AOC,
AP
OA
=
PR
OC
,
4-t
8
=
2t
6
,
∴t=
12
11

當(dāng)點(diǎn)L在AC上時(shí),如圖7,
精英家教網(wǎng)
同理得出
LQ
OC
=
AQ
OA
,
2t
6
=
4+t
8
,
t=
12
5
,
12
11
<t≤
12
5

如圖⑤,當(dāng)點(diǎn)L在y軸上時(shí),t=4.
精英家教網(wǎng)
綜上可得:
12
11
<t≤
12
5
或t=4.
點(diǎn)評(píng):本題主要考查了矩形的性質(zhì)、正方形的性質(zhì)以及坐標(biāo)與圖形的性質(zhì)的綜合題,注意仔細(xì)審題,考慮要全面.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點(diǎn)的坐標(biāo)為
(24,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(3,4),將OP繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段OP′.
(1)在圖中畫出線段OP′;
(2)求P′的坐標(biāo)和
PP′
的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,O為原點(diǎn).反比例函數(shù)y=
6
x
的圖象經(jīng)過第一象限的點(diǎn)A,點(diǎn)A的縱坐標(biāo)是橫坐標(biāo)的
3
2
倍.
(1)求點(diǎn)A的坐標(biāo);
(2)如果經(jīng)過點(diǎn)A的一次函數(shù)圖象與x軸的負(fù)半軸交于點(diǎn)B,AC⊥x軸于點(diǎn)C,若△ABC的面積為9,求這個(gè)一次函數(shù)的解析式.
(3)點(diǎn)D在反比例函數(shù)y=
6
x
的圖象上,且點(diǎn)D在直線AC的右側(cè),作DE⊥x軸于點(diǎn)E,當(dāng)△ABC與△CDE相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個(gè)位似圖形△A1B1C1,△A2B2C2,同時(shí)滿足下列兩個(gè)條件:
(1)以原點(diǎn)O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標(biāo)上相應(yīng)字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-4,0),B(0,3),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6
;
(2)三角形(2013)的直角頂點(diǎn)的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習(xí)冊(cè)答案