【題目】如圖,A,B,C,D為一直線上4個點,BC=3,△BCE為等邊三角形,⊙O過A,D,E三點,且∠AOD=120°,設AB=x,CD=y,則y與x的函數(shù)關系式是( 。
A.y=B.y=xC.y=3x+3D.y=
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解七、八年級學生對“防溺水”安全知識的掌握情況,從七、八年級各隨機抽取50名學生進行測試,并對成績(百分制)進行整理、描述和分析.部分信息如下:
a.七年級成績頻數(shù)分布直方圖:
b.七年級成績在這一組的是:70 72 74 75 76 76 77 77 77 78 79
c.七、八年級成績的平均數(shù)、中位數(shù)如下:
年級 | 平均數(shù) | 中位數(shù) |
七 | 76.9 | m |
八 | 79.2 | 79.5 |
根據(jù)以上信息,回答下列問題:
(1)在這次測試中,七年級在80分以上(含80分)的有 人;
(2)表中m的值為 ;
(3)在這次測試中,七年級學生甲與八年級學生乙的成績都是78分,請判斷兩位學生在各自年級的排名誰更靠前,并說明理由;
(4)該校七年級學生有400人,假設全部參加此次測試,請估計七年級成績超過平均數(shù)76.9分的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著信息技術的迅猛發(fā)展,人們去商場購物的支付方式更加多樣、便捷.某校數(shù)學興趣小組設計了一份調查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調查結果進行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:
(1)這次活動共調查了 人;在扇形統(tǒng)計圖中,表示“支付寶”支付的扇形圓心角的度數(shù)為 ;
(2)將條形統(tǒng)計圖補充完整.觀察此圖,支付方式的“眾數(shù)”是“ ”;
(3)在一次購物中,小明和小亮都想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學小組的兩位同學準備測量兩幢教學樓之間的距離,如圖,兩幢教學樓AB和CD之間有一景觀池(AB⊥BD,CD⊥BD),一同學在A點測得池中噴泉處E點的俯角為42°,另一同學在C點測得E點的俯角為45°(點B,E,D在同一直線上),兩個同學已經(jīng)在學校資料室查出樓高AB=15m,CD=20m,求兩幢教學樓之間的距離BD.
(結果精確到0.1m,參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于點和點,與軸交于點,點是拋物線的頂點,過點作軸的垂線,垂足為,連接.
(1)求此拋物線的解析式;
(2)點是拋物線上的動點,設點的橫坐標為.
①當時,求點的坐標;
②過點作軸,與拋物線交于點,為軸上一點,連接,,將沿著翻折,得,若四邊形恰好為正方形,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,AB⊥BC,分別過點A,C作BM的垂線,垂足分別為M,N.
(1)求證:BMBC=ABCN;
(2)若AB=BC.
①如圖2,若BM=MN,過點A作AD∥BC交CM的延長線于點D,求DN:CN的值;
②如圖3,若BM>MN,延長BN至點E,使BM=ME,過點A作AF∥BC交CE的延長線于點F,若E是CF的中點,且CN=1,直接寫出線段AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=x+4的圖象與反比例函數(shù)y=(k為常數(shù)且k≠0)的圖象交于A(﹣1,a),B兩點,與x軸交于點C.
(1)求此反比例函數(shù)的表達式;
(2)若點P在x軸上,且S△ACP=S△BOC,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:若拋物線上有兩點關于原點對稱(點A在點B左側)則稱它為“完美拋物線”,如圖.
(1)若,求的值;
(2)若拋物線是“完美拋物線”,求的值;
(3)若完美拋物線與軸交于點E與軸交于兩點(點D在點C的左側),頂點為點,是以為直角邊的直角三角形,點,求點中的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】機器人“海寶”在某圓形區(qū)域表演“按指令行走”,如圖所示,“海寶”從圓心O出發(fā),先沿北偏西67.4°方向行走13米至點A處,再沿正南方向行走14米至點B處,最后沿正東方向行走至點C處,點B、C都在圓O上.(本題參考數(shù)據(jù):sin67.4°=,cos67.4°=,tan67.4°=)
(1)求弦BC的長;
(2)請判斷點A和圓的位置關系,試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com