【題目】如圖,在矩形ABCD中,E是AD邊的中點,BE⊥AC,垂足為F,連結DF,下列四個結論:①△AEF∽△CAB;②tan∠CAD=;③DF=DC;④CF=2AF,正確的是( 。
A. ①②③ B. ②③④ C. ①③④ D. ①②④
【答案】C
【解析】解:如圖,過D作DM∥BE交AC于N,∵四邊形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于點F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正確;
∵AD∥BC,∴△AEF∽△CBF,∴ ,∵AE=AD=BC,∴=,∴CF=2AF,故④正確;
∵DE∥BM,BE∥DM,∴四邊形BMDE是平行四邊形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于點F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正確;
設AE=a,AB=b,則AD=2a,由△BAE∽△ADC,有,即b=a,∴tan∠CAD===.故②不正確;
正確的有①③④,故選C.
科目:初中數(shù)學 來源: 題型:
【題目】在中, , , 三邊的長分別為, , ,求這個三角形的面積.
小明同學在解答這道題時,先建立了一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中
畫出格點△ABC中,(即△ABC三個頂點都在小正方形的頂點處),如圖1所示,這樣不需要△ABC高,借用網(wǎng)格就能計算出它的面積.
(1)△ABC的面積為 ;
(2)如果△MNP三邊的長分別為, , ,請利用圖2的正方形網(wǎng)格(每個小正方形的邊長為1)畫出相應的格點△MNP,并直接寫出△MNP的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法:
①兩點之間的所有連線中,線段最短;②過一點有且只有一條直線與已知直線垂直;③連接直線外一點與直線上各點的所有線段中,垂線段最短;④直線外一點到這條直線的垂線段叫做點到直線的距離.
其中正確的個數(shù)有( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,A,B在數(shù)軸上對應的數(shù)分別用a,b表示,且(ab+100)2+|a﹣20|=0,P是數(shù)軸上的一個動點.
(1)在數(shù)軸上標出A、B的位置,并求出A、B之間的距離.
(2)已知線段OB上有點C且|BC|=6,當數(shù)軸上有點P滿足PB=2PC時,求P點對應的數(shù).
(3)動點P從原點開始第一次向左移動1個單位長度,第二次向右移動3個單位長度,第三次向左移動5個單位長度第四次向右移動7個單位長度,….點P能移動到與A或B重合的位置嗎?若都不能,請直接回答.若能,請直接指出,第幾次移動與哪一點重合?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把一副三角板按如圖放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜邊AC=BD=10,若將三角板DEB繞點B逆時針旋轉45°得到△D′E′B,則點A在△D′E′B的( )
A.內(nèi)部 B.外部 C.邊上 D.以上都有可能
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明用尺規(guī)作圖作△ABC邊AC上的高BH,作法如下:
①分別以點D,E為圓心,大于DE的長為半徑作弧,兩弧交于F;
②作射線BF,交邊AC于點H;
③以B為圓心,BK長為半徑作弧,交直線AC于點D和E;
④取一點K,使K和B在AC的兩側;
所以,BH就是所求作的高. 其中順序正確的作圖步驟是( )
A. ①②③④ B. ④③②① C. ②④③① D. ④③①②
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com