【題目】用四舍五入法對(duì)0.02015(精確到千分位)取近似數(shù)是(
A.0.02
B.0.020
C.0.0201
D.0.0202

【答案】B
【解析】解:0.02015≈0.020(精確到千分位).
故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),已知△ABC中,∠BAC=90°,AB=AC,AE是過(guò)A的一條直線,且B,C在A,E的異側(cè),BD⊥AE于D,CE⊥AE于E

(1)試說(shuō)明:BD=DE+CE.
(2)若直線AE繞A點(diǎn)旋轉(zhuǎn)到圖(2)位置時(shí)(BD<CE),其余條件不變,問(wèn)BD與DE,CE的關(guān)系如何?請(qǐng)直接寫(xiě)出結(jié)果;

(3)若直線AE繞A點(diǎn)旋轉(zhuǎn)到圖(3)位置時(shí)(BD>CE),其余條件不變,問(wèn)BD與DE,CE的關(guān)系如何?請(qǐng)直接寫(xiě)出結(jié)果,不需說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=6,AC=BC=5,將△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn),得到△ADE,旋轉(zhuǎn)角為α(0°<α<180°),點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)E,連接BD,BE.

(1)如圖,當(dāng)α=60°時(shí),延長(zhǎng)BE交AD于點(diǎn)F.

①求證:△ABD是等邊三角形;

②求證:BF⊥AD,AF=DF;

③請(qǐng)直接寫(xiě)出BE的長(zhǎng);

(2)在旋轉(zhuǎn)過(guò)程中,過(guò)點(diǎn)D作DG垂直于直線AB,垂足為點(diǎn)G,連接CE,當(dāng)∠DAG=∠ACB,且線段DG與線段AE無(wú)公共點(diǎn)時(shí),請(qǐng)直接寫(xiě)出BE+CE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B、C為數(shù)軸上的三點(diǎn),動(dòng)點(diǎn)A、B同時(shí)從原點(diǎn)出發(fā),動(dòng)點(diǎn)A每秒運(yùn)動(dòng)x個(gè)單位,動(dòng)點(diǎn)B每秒運(yùn)動(dòng)y個(gè)單位,且動(dòng)點(diǎn)A運(yùn)動(dòng)到的位置對(duì)應(yīng)的數(shù)記為a,動(dòng)點(diǎn)B運(yùn)動(dòng)到的位置對(duì)應(yīng)的數(shù)記為b,定點(diǎn)C對(duì)應(yīng)的數(shù)為8.

(1)若2秒后,a、b滿足|a+8|+(b﹣2)2=0,則x=   ,y=   ,并請(qǐng)?jiān)跀?shù)軸上標(biāo)出A、B兩點(diǎn)的位置.

(2)若動(dòng)點(diǎn)A、B在(1)運(yùn)動(dòng)后的位置上保持原來(lái)的速度,且同時(shí)向正方向運(yùn)動(dòng)z秒后使得|a|=|b|,使得z=   

(3)若動(dòng)點(diǎn)A、B在(1)運(yùn)動(dòng)后的位置上都以每秒2個(gè)單位向正方向運(yùn)動(dòng)繼續(xù)運(yùn)動(dòng)t秒,點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)B之間的距離為AB,且AC+BC=1.5AB,則t=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若代數(shù)式2ab的值為1,則代數(shù)式7+4a2b的值為( 。

A. 7B. 8C. 9D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】|a3|+b+420,則(a+b2018的值是( 。

A. 2018B. 1C. 2018D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形ABCD繞點(diǎn)C旋轉(zhuǎn)得到矩形FECG,點(diǎn)EAD上,延長(zhǎng)EDFG于點(diǎn)H

(1)求證:△EDC≌△HFE;

(2)連接BECH

①四邊形BEHC是怎樣的特殊四邊形?證明你的結(jié)論.

②當(dāng)ABBC的比值為 時(shí),四邊形BEHC為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在用配方法解一元二次方程x26x1的過(guò)程中配方正確的是( 。

A.x328B.x3210C.x+321D.x+328

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】規(guī)定一種新的運(yùn)算“*”:對(duì)于任意實(shí)數(shù)x,y,滿足x*y=x﹣y+xy.如3*2=3﹣2+3×2=7,則2*1=(
A.4
B.3
C.2
D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案