如圖1,在ABCD中,AEBCE,E恰為BC的中點(diǎn),AD=AE.
【小題1】(1)如圖2,點(diǎn)P在線(xiàn)段BE上,作EFDP于點(diǎn)F,連結(jié)AF.
求證:;
【小題2】(2)請(qǐng)你在圖3中畫(huà)圖探究:當(dāng)P為射線(xiàn)EC上任意一點(diǎn)(P不與點(diǎn)E重合)時(shí),作EFDP于點(diǎn)F,連結(jié)AF,線(xiàn)段DF、EFAF之間有怎樣的數(shù)量關(guān)系?直接寫(xiě)出你的結(jié)論.

【小題1】(1)證明:∵在ABCD中,ADBC, AEBCE
AEADA,∠FPE=∠ADP
AD=AE,∠EAD=90°
∴將△AEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△ADG
∴△AEF≌△ADG,∠FAG="90°           " -------------1分
AG=AF,∠ADG=∠AEF
EFPD,AEBC
∴∠AEF+∠PEF=90°,∠FPE+∠PEF=90°
∴∠AEF=∠FPE
∵∠ADG=∠AEF,∠FPE=∠ADP
∴∠ADG=∠ADP
∴點(diǎn)GPD上              ----------------------2分
AF=AG,∠FAG=90°
             ----------------------3分
FG=DF-DG=DF-EF
      ------------------------4分
【小題2】(2)  (兩個(gè)圖各1分,結(jié)論1分)
解析:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在?ABCD中,AO⊥BC,垂足為O,已知∠ABC=60°,BO=2,AO=2
3

(1)求線(xiàn)段AB的長(zhǎng);
(2)如圖2,點(diǎn)E為線(xiàn)段AB的中點(diǎn),過(guò)點(diǎn)E的直線(xiàn)FG與CB的延長(zhǎng)線(xiàn)交于點(diǎn)F,與射線(xiàn)AD交于點(diǎn)G,連接OE,以O(shè)E所在直線(xiàn)為對(duì)稱(chēng)軸,△OEF經(jīng)軸對(duì)稱(chēng)變換后得到△OEF′,記直線(xiàn)EF′與射線(xiàn)AD的交點(diǎn)為H.
①當(dāng)點(diǎn)G在點(diǎn)H的左側(cè)時(shí),求證:△AEG∽△AHE;
②若HG=6,求AG的長(zhǎng).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探究規(guī)律:
已知,如圖1,直線(xiàn)m∥n,A、B為直線(xiàn)n上的兩點(diǎn),C、P為直線(xiàn)m上的兩點(diǎn).若A、B、C為三個(gè)定點(diǎn),P為動(dòng)點(diǎn),則
(1)△PAB與△CAB的面積大小關(guān)系為
 
;
(2)請(qǐng)你在圖1中再畫(huà)出一個(gè)與△ABC面積相等的△DEF,并說(shuō)明面積相等的理由.
解決問(wèn)題:
問(wèn)題1:如圖2,在?ABCD中,點(diǎn)P是CD上任意一點(diǎn),
則S△PAB
 
S△ADP+S△BCP(填寫(xiě)“>”、“<”或“=”).
問(wèn)題2:如圖3,在公路旁邊,有一塊矩形的土地ABCD,其內(nèi)部有一個(gè)底面為圓形的建筑物,點(diǎn)O為圓心.若要將土地(不含圓形建筑物所占的面積)平均分給兩家承包,且分割線(xiàn)都過(guò)公路邊(AB)上一點(diǎn)P,請(qǐng)你確定點(diǎn)P的位置,并畫(huà)出分割線(xiàn),說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖1,矩形ABCD中,BC=2AB,M為AD的中點(diǎn),連接BM.
(1)請(qǐng)你判斷并寫(xiě)出∠BMD是∠ABM的幾倍;
(2)如圖2,在?ABCD中,BC=2AB,M為AD的中點(diǎn),CE⊥AB,連接EM、CM,請(qǐng)問(wèn):∠AEM與∠DME是否也具有(1)中的倍數(shù)關(guān)系?若有,請(qǐng)證明;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•槐蔭區(qū)一模)(1)已知:如圖1,點(diǎn)A、C、D、B在同一條直線(xiàn)上,AC=BD,AE=BF,∠A=∠B.求證:∠E=∠F.

(2)已知:如圖2,在?ABCD中,AE平分∠DAB,交CD于點(diǎn)E.求證:DA=DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在?ABCD中,AE⊥BC于E,E恰為BC的中點(diǎn),AD=AE.
(1)如圖2,點(diǎn)P在線(xiàn)段BE上,作EF⊥DP于點(diǎn)F,連接AF.求證:DF-EF=
2
AF;
(2)請(qǐng)你在圖3中畫(huà)圖探究:當(dāng)P為射線(xiàn)EC上任意一點(diǎn)(P不與點(diǎn)E重合)時(shí),作EF⊥DP于點(diǎn)F,連接AF,線(xiàn)段DF、EF與AF之間有怎樣的數(shù)量關(guān)系?直接寫(xiě)出你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案