【題目】如圖是學習一元一次方程應用時,老師出示的問題和兩名同學所列的方程,根據圖中信息,解答下列問題.
(1)小杰同學所列方程中的x表示什么,小婷同學所列方程中的y表示什么;
(2)兩個方程中任選一個,并寫出它的等量關系;
(3)解(2)中你所選擇的方程,并回答老師提出的問題。
【答案】(1)x表示所買藍布料的長度,y表示買藍布料的費用;(2)(小杰)買藍布料的費用+買黑布料的費用540元;(小婷)藍布料的長度+黑布料的長度138m;(3)藍布料買了75m ,黑布料買了63m。
【解析】
(1)根據兩人的方程思路,可得出:x表示所買藍布料的長度,y表示買藍布料的費用;
(2)根據題意,可找出:(小杰)買藍布料的費用+買黑布料的費用540元;(小婷)藍布料的長度+黑布料的長度138m;
(3)選擇兩個方程中的一個,解之即可得出結論.
(1)所買藍布料的長度,買藍布料的費用;
(2)(小杰)買藍布料的費用+買黑布料的費用=540元;
(小婷)藍布料的長度+黑布料的長度=138m.
(3)選小杰的方程:3x+5(138-x)=540
解得:x=75 138
答:藍布料買了75m ,黑布料買了63m。
選小婷的方程:=138
解得y=225 540315
225÷3=75(m) 315÷5=63(m)
答:藍布料買了75m ,黑布料買了63m。
科目:初中數學 來源: 題型:
【題目】如圖邊長為1的正方形ABCD被兩條與邊平行的線段EF、GH分割為四個小矩形,EF與GH交于點P
(1)若AG=AE,證明:AF=AH;
(2)若矩形PFCH的面積,恰矩形AGPE面積的兩倍,試確定∠HAF的大;
(3)若矩形EPHD的面積為 ,求Rt△GBF的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在銳角△ABC中,BC=10,高AD=8,矩形EFPQ的一邊QP在BC邊上,E、F兩點分別在AB、AC上,AD交EF于點H.
(1)求證: = ;
(2)設EF的長為x.
①當x為何值時,矩形EFPQ為正方形?
②當x為何值時,矩形EFPQ的面積最大?并求其最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,大樓AB右側有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測得障礙物邊緣點C的俯角為30°,測得大樓頂端A的仰角為45°(點B,C,E在同一水平直線上),已知AB=80m,DE=10m,求障礙物B,C兩點間的距離(結果精確到0.1m)(參考數據: ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】觀察圖中給出的四個點陣,s表示每個點陣中的點的個數,按照圖形中的點的個數變化規(guī)律,猜想第10個點陣中的點的個數s為_________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸相交于A(﹣1,0),B(3,0),與y軸交于點C(0,3).
(1)求拋物線的解析式;
(2)連接BC,點P為拋物線上第一象限內一動點,當△BCP面積最大時,求點P的坐標;
(3)設點D是拋物線的對稱軸上的一點,在拋物線上是否存在點Q,使以點B,C,D,Q為頂點的四邊形為平行四邊形?若存在,求出點Q的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知直線y=﹣ x+3與x軸、y軸分別交于A、B兩點,設O為坐標原點.
(1)求∠ABO的正切值;
(2)如果點A向左平移12個單位到點C,直線l過點C且與直線y=﹣ x+3平行,求直線l的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在正方形ABCD中,P在對角線AC上,E在AC的延長線上,PB=PM , DE=EF.
(1)求證:∠CDE=∠F;
(2)若AB=5,CM=1,求PB的長;
(3)如圖2,若BF=10,△QCF是以CF為底的等腰三角形,連接DQ , 試求△CDQ的最大面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com