精英家教網 > 初中數學 > 題目詳情
如圖,圓心角∠BOC=100°,則圓周角∠BAC的度數為(    )
A.100°B.130°C.80°D.50°
D
分析:根據一條弧所對的圓周角等于它所對的圓心角的一半求解即可.
解:根據圓周角定理,可得:∠BAC=∠BOC=50°.
故選D.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:單選題

一根排水管的截面如圖所示,已知排水管的截面圓半徑,截面圓圓心到水面的距離是6,則水面寬是(  )
A.16B.10 C.8D.6

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:如圖,在△ABC中,∠ABC=90°,以AB上的點O為圓心,OB的長為半徑的圓與AB交于點E,與AC切于點D.

小題1:求證:BC=CD;
小題2:求證:∠ADE=∠ABD;
小題3:設AD=2,AE=1,求⊙O直徑的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,為⊙O的直徑,為弦,,如果°,
那么∠A等于
A.°
B.°
C.°
D.°

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,點A、B、C在⊙上,AO∥BC,∠OBC=40°,則∠ACB的度數是

A.10°        B.20°        C.30°         D.40°

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

若扇形的圓心角為120º,弧長是10πcm,則扇形的面積為           cm2.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm.給出下列三個結論:
① 以點C為圓心,2.3cm長為半徑的圓與AB相離;
② 以點C為圓心,2.4cm長為半徑的圓與AB相切;
③ 以點C為圓心,2.5cm長為半徑的圓與AB相交;則上述結論中正確的個數是(  )
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,直角梯形ABCD中,ADBC,∠A=90o,∠C=60°,AD=3cm,BC=9cm.⊙O1的圓心O1從點A開始沿折線A—D—C以1cm/s的速度向點C運動,⊙O2的圓心O2從點B開始沿BA邊以cm/s的速度向點A運動,⊙O1半徑為2cm,⊙O2的半徑為4cm,若O1O2分別從點A、點B同時出發(fā),運動的時間為ts。

小題1:(1)設經過t秒,⊙O2與腰CD相切于點F,過點F畫EF⊥DC,交AB于E,則EF=          。
小題2:(2)過E畫EG∥BC,交DC于G,畫GH⊥BC,垂足為H.則∠FEG=             。
小題3:(3)求此時t的值。
小題4:(4)在0<t≤3范圍內,當t為何值時,⊙O1與⊙O2外切?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

小紅同學要用紙板制作一個高4cm,底面周長是6π cm的圓錐形漏斗模型,若不計接縫和損耗,則她所需紙板的面積是                             ( ▲ )
A.12πB.15πcm2C.18πcm2D.24πcm2

查看答案和解析>>

同步練習冊答案