已知:如圖,四邊形ABCD是⊙O的內(nèi)接正方形,點(diǎn)P是劣弧CD上不同于點(diǎn)C的任意一點(diǎn),則∠BPC的度數(shù)是(   )

A.45°             B.60°             C.75°             D.90°

 

【答案】

A

【解析】

試題分析:連接OB、OC,根據(jù)圓內(nèi)接正方形的性質(zhì)可得∠BOC的度數(shù),再根據(jù)圓周角定理即可求得結(jié)果.

連接OB、OC

∵四邊形ABCD是⊙O的內(nèi)接正方形

∴∠BOC=90°

∴∠BPC=45°

故選A.

考點(diǎn):圓內(nèi)接正方形的性質(zhì),圓周角定理

點(diǎn)評(píng):輔助線問(wèn)題是初中數(shù)學(xué)的難點(diǎn),能否根據(jù)題意準(zhǔn)確作出適當(dāng)?shù)妮o助線很能反映一個(gè)學(xué)生的對(duì)圖形的理解能力,因而是中考的熱點(diǎn),尤其在壓軸題中比較常見(jiàn),需特別注意.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,四邊形ABCD中∠B=90°,AB=9,BC=12,AD=8,CD=17.
試求:(1)AC的長(zhǎng);(2)四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,四邊形ABCD內(nèi)接于⊙O,且AB∥CD,AD∥BC,
求證:四邊形ABCD是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖,四邊形ABCD是正方形,E、F分別是AB和AD延長(zhǎng)線上的點(diǎn),且BE=DF
(1)求證:CE=CF;
(2)求∠CEF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,四邊形ABCD中,BC=CD=10,AB=15,AB⊥BC,CD⊥BC,若把四邊形ABCD繞直線AB旋轉(zhuǎn)一周,則所得幾何體的表面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,四邊形ABCD及一點(diǎn)P.
求作:四邊形A′B′C′D′,使得它是由四邊形ABCD繞P點(diǎn)順時(shí)針旋轉(zhuǎn)150°得到的.

查看答案和解析>>

同步練習(xí)冊(cè)答案