如圖,⊙O的半徑為12cm,B為⊙O外一點,OB交⊙O于點A,AB=OA,動點P從點A出發(fā),以2πcm/s的速度沿圓周逆時針運動,當(dāng)點P回到點A就停止運動.當(dāng)點P運動的時間為    s時,BP與⊙O相切.
【答案】分析:根據(jù)題意畫出圖形再解答,分兩種情況分別計算弧長后求解.
解答:解:如圖,連接OP,則OP=12cm,OB=24cm.
在Rt△OPB中,OP=OB,故∠BOP=60°.
的長l==4π,
故當(dāng)t==2s時,BP與⊙O相切;
同理當(dāng)P運動到P′時,∠AOP′=360°-60°=300°.==20π,
故當(dāng)t==10s時,BP與⊙O相切.
∴當(dāng)點P運動的時間為2s或10s時,BP與⊙O相切.
點評:本題考查的是切線的性質(zhì)及弧長公式,解答此題時要注意過圓外一點有兩條直線與圓相切,不要漏解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為5,AB=5
3
,C是圓上一點,則∠ACB=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為3,直徑AB⊥弦CD,垂足為E,點F是BC的中點,那么EF2+OF2=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為
5
,圓心與坐標(biāo)原點重合,在直角坐標(biāo)系中,把橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點稱為格點,則⊙O上格點有
 
個,設(shè)L為經(jīng)過⊙O上任意兩個格點的直線,則直線L同時經(jīng)過第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為13cm,弦AB∥CD,兩弦位于圓心O的兩側(cè),AB=24cm,CD=10cm,求AB和CD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的半徑為5,P是弦MN上的一點,且MP:PN=1:2.若PA=2,則MN的長為
6
2
6
2

查看答案和解析>>

同步練習(xí)冊答案