【題目】如圖,ABC中,ABAC18,BC12,正方形DEFG的頂點(diǎn)E,FABC內(nèi),頂點(diǎn)D,G分別在ABAC上,ADAG,DG6,則點(diǎn)FBC的距離為( )

A.1B.2C.126D.66

【答案】D

【解析】

首先過(guò)點(diǎn)AAMBC于點(diǎn)M,交DG于點(diǎn)N,延長(zhǎng)GFBC于點(diǎn)H,易證得ADG∽△ABC,然后根據(jù)相似三角形的性質(zhì)以及正方形的性質(zhì)求解即可求得答案.

解:過(guò)點(diǎn)AAMBC于點(diǎn)M,交DG于點(diǎn)N,延長(zhǎng)GFBC于點(diǎn)H,

ABACADAG,

ADABAGAC

∵∠BAC=∠DAG,

∴△ADG∽△ABC,

∴∠ADG=∠B

DGBC,

∵四邊形DEFG是正方形,

FGDG,GF=DG=6,

FHBC,ANDG

ABAC18,BC12

BMBC6

AM12,

,

AN6,

MNAMAN6,

FHMNGF66.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

在學(xué)習(xí)《圓》這一章時(shí),老師給同學(xué)們布置了一道尺規(guī)作圖題:

尺規(guī)作圖:如圖,過(guò)圓外一點(diǎn)作圓的切線.

已知:P為⊙O外一點(diǎn).

求作:經(jīng)過(guò)點(diǎn)P的⊙O的切線.

小敏的作法如下:如圖,

(1)連接OP,作線段OP的垂直平分線MNOP于點(diǎn)C.

(2)以點(diǎn)C為圓心,CO的長(zhǎng)為半徑作圓,交⊙OA,B兩點(diǎn).

(3)作直線PA,PB.

所以直線PAPB就是所求作的切線.

老師認(rèn)為小敏的作法正確.

請(qǐng)回答:

(1)連接OA,OB后,可證∠OAP=∠OBP90°,其依據(jù)是_________.

(2)如果⊙O的半徑等于3,點(diǎn)P到切點(diǎn)的距離為4,求點(diǎn)A與點(diǎn)B之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線y=kx(k≠0)經(jīng)過(guò)點(diǎn)(12,﹣5),將直線向上平移m(m>0)個(gè)單位,若平移后得到的直線與半徑為6的⊙O相交(點(diǎn)O為坐標(biāo)原點(diǎn)),則m的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線經(jīng)過(guò)點(diǎn),交y 軸于點(diǎn)C

1)求拋物線的頂點(diǎn)坐標(biāo).

2)點(diǎn)為拋物線上一點(diǎn),是否存在點(diǎn)使,若存在請(qǐng)直接給出點(diǎn)坐標(biāo);若不存在請(qǐng)說(shuō)明理由.

3)將直線繞點(diǎn)順時(shí)針旋轉(zhuǎn),與拋物線交于另一點(diǎn),求直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形中,是等邊三角形,、的延長(zhǎng)線分別交于點(diǎn),連接,相交于點(diǎn),給出下列結(jié)論:①;②;③;④.其中正確的個(gè)數(shù)是(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】M、N兩同學(xué)在做一種游戲,規(guī)定每人隨機(jī)伸出一只手中的1根至5根手指,兩人伸出的手指的和若為23,48,9,10,則M勝;若和為5,67,則N.

(1)用畫(huà)樹(shù)狀圖法分別求MN兩人獲勝的概率;

(2)上面的游戲公平嗎?若不公平,你能否設(shè)計(jì)一個(gè)方案使游戲絕對(duì)公平?若能,寫(xiě)出方案;若不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為積極響應(yīng)新舊動(dòng)能轉(zhuǎn)換.提高公司經(jīng)濟(jì)效益.某科技公司近期研發(fā)出一種新型高科技設(shè)備,每臺(tái)設(shè)備成本價(jià)為30萬(wàn)元,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),每臺(tái)售價(jià)為40萬(wàn)元時(shí),年銷(xiāo)售量為600臺(tái);每臺(tái)售價(jià)為45萬(wàn)元時(shí),年銷(xiāo)售量為550臺(tái).假定該設(shè)備的年銷(xiāo)售量y(單位:臺(tái))和銷(xiāo)售單價(jià)(單位:萬(wàn)元)成一次函數(shù)關(guān)系.

(1)求年銷(xiāo)售量與銷(xiāo)售單價(jià)的函數(shù)關(guān)系式;

(2)根據(jù)相關(guān)規(guī)定,此設(shè)備的銷(xiāo)售單價(jià)不得高于70萬(wàn)元,如果該公司想獲得10000萬(wàn)元的年利潤(rùn).則該設(shè)備的銷(xiāo)售單價(jià)應(yīng)是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:三角形ABC內(nèi)接于圓O,∠BAC∠ABC的角平分線AEBE相交于點(diǎn)E,延長(zhǎng)AE交外接圓O于點(diǎn)D,連接BD,DC,且∠BCA=60°

1)求∠BED的大;

2)證明:△BED為等邊三角形;

3)若∠ADC=30°,圓O的半徑為r,求等邊三角形BED的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形ABCD中,∠B90°,ADBC,且AD4cm,AB6cmDC10cm.若動(dòng)點(diǎn)PA點(diǎn)出發(fā),以每秒4cm的速度沿線段ADDCC點(diǎn)運(yùn)動(dòng);動(dòng)點(diǎn)QC點(diǎn)出發(fā)以每秒5cm的速度沿CBB點(diǎn)運(yùn)動(dòng),當(dāng)Q點(diǎn)到達(dá)B點(diǎn)時(shí),動(dòng)點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P、Q同時(shí)出發(fā),并運(yùn)動(dòng)了t秒,

(1)直角梯形ABCDBC_____cm,周長(zhǎng)為______cm.

(2)當(dāng)t為多少時(shí),四邊形PQCD成為平行四邊形?

(3)是否存在t,使得P點(diǎn)在線段DC上且PQDC?若存在,求出此時(shí)t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案