【題目】文美書(shū)店決定用不多于20000元購(gòu)進(jìn)甲乙兩種圖書(shū)共1200本進(jìn)行銷售.甲、乙兩種圖書(shū)的進(jìn)價(jià)分別為每本20元、14元,甲種圖書(shū)每本的售價(jià)是乙種圖書(shū)每本售價(jià)的1.4倍,若用1680元在文美書(shū)店可購(gòu)買甲種圖書(shū)的本數(shù)比用1400元購(gòu)買乙種圖書(shū)的本數(shù)少10.

(1)甲乙兩種圖書(shū)的售價(jià)分別為每本多少元?

(2)書(shū)店為了讓利讀者,決定甲種圖書(shū)售價(jià)每本降低3元,乙種圖書(shū)售價(jià)每本降低2元,問(wèn)書(shū)店應(yīng)如何進(jìn)貨才能獲得最大利潤(rùn)?(購(gòu)進(jìn)的兩種圖書(shū)全部銷售完.)

【答案】(1)甲種圖書(shū)售價(jià)每本28元,乙種圖書(shū)售價(jià)每本20元;(2)甲種圖書(shū)進(jìn)貨533本,乙種圖書(shū)進(jìn)貨667本時(shí)利潤(rùn)最大.

【解析】1乙種圖書(shū)售價(jià)每本元,則甲種圖書(shū)售價(jià)為每本,根據(jù)1680元在文美書(shū)店可購(gòu)買甲種圖書(shū)的本數(shù)比用1400元購(gòu)買乙種圖書(shū)的本數(shù)少10列出方程求解即可;

2設(shè)甲種圖書(shū)進(jìn)貨本,總利潤(rùn)元,根據(jù)題意列出不等式及一次函數(shù),解不等式求出解集從而確定方案,進(jìn)而求出利潤(rùn)最大的方案.

1)設(shè)乙種圖書(shū)售價(jià)每本元,則甲種圖書(shū)售價(jià)為每本元.由題意得:

,

解得:

經(jīng)檢驗(yàn),是原方程的解.

所以,甲種圖書(shū)售價(jià)為每本元,

答:甲種圖書(shū)售價(jià)每本28元,乙種圖書(shū)售價(jià)每本20元.

2)設(shè)甲種圖書(shū)進(jìn)貨本,總利潤(rùn)元,則

又∵,

解得:

的增大而增大,

∴當(dāng)最大時(shí)最大,

∴當(dāng)本時(shí)最大,

此時(shí),乙種圖書(shū)進(jìn)貨本數(shù)為(本).

答:甲種圖書(shū)進(jìn)貨533本,乙種圖書(shū)進(jìn)貨667本時(shí)利潤(rùn)最大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖:長(zhǎng)方形ABCD中,點(diǎn)EBC邊的中點(diǎn),將D折起,使點(diǎn)D落在點(diǎn)E處.

1)請(qǐng)你用尺規(guī)作圖畫(huà)出折痕和折疊后的圖形.(不要求寫(xiě)已知,求作和作法,保留作圖痕跡)

2)若折痕與AD、BC分別交于點(diǎn)M、N,與DE交于點(diǎn)O,求證△MDO≌△NEO

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線,把的直角三角板的直角頂點(diǎn)放在直線.將直角三角板在平面內(nèi)繞點(diǎn)任意轉(zhuǎn)動(dòng),若轉(zhuǎn)動(dòng)的過(guò)程中,直線與直線的夾角為60°,則的度數(shù)為___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,CD是一高為4米的平臺(tái),AB是與CD底部相平的一棵樹(shù),在平臺(tái)頂C點(diǎn)測(cè)得樹(shù)頂A點(diǎn)的仰角α=30°,從平臺(tái)底部向樹(shù)的方向水平前進(jìn)3米到達(dá)點(diǎn)E,在點(diǎn)E處測(cè)得樹(shù)頂A點(diǎn)的仰角β=60°,求樹(shù)高AB(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】禁漁期間,我漁政船在A處發(fā)現(xiàn)正北方向B處有一艘可以船只,測(cè)得A、B兩處距離為200海里,可疑船只正沿南偏東45°方向航行,我漁政船迅速沿北偏東30°方向前去攔截,經(jīng)歷4小時(shí)剛好在C處將可疑船只攔截.求該可疑船只航行的平均速度(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,物理教師為同學(xué)們演示單擺運(yùn)動(dòng),單擺左右擺動(dòng)中,在OA的位置時(shí)俯角∠EOA=30°,在OB的位置時(shí)俯角∠FOB=60°,若OC⊥EF,點(diǎn)A比點(diǎn)B高7cm.求:

(1)單擺的長(zhǎng)度( ≈1.7);
(2)從點(diǎn)A擺動(dòng)到點(diǎn)B經(jīng)過(guò)的路徑長(zhǎng)(π≈3.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】提出問(wèn)題:

1)如圖,我們將圖(1)所示的凹四邊形稱為鏢形”.鏢形圖中,、的數(shù)量關(guān)系為____.

2)如圖(2),已知平分,,,求的度數(shù).

由(1)結(jié)論得:

所以

因?yàn)?/span>

所以

所以.

解決問(wèn)題:

1)如圖(3),直線平分, 平分的外角,猜想、的數(shù)量關(guān)系是______

2)如圖(4),直線平分的外角, 平分的外角,猜想、的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:A0,3),B3,0),C3,4)三點(diǎn),點(diǎn)Px,﹣0.5x),當(dāng)ABP的面積等于ABC的面積時(shí),則P點(diǎn)的坐標(biāo)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線AB經(jīng)過(guò)點(diǎn)A(6,0)、B(0,6),⊙O的半徑為2(O為坐標(biāo)原點(diǎn)),點(diǎn)P是直線AB上的一動(dòng)點(diǎn),過(guò)點(diǎn)P作⊙O的一條切線PQ,Q為切點(diǎn),則切線長(zhǎng)PQ的最小值為( )

A.
B.3
C.3
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案