【題目】小明家客廳里裝有一種三位單極開關(guān),分別控制著A(樓梯)B(客廳)、C(走廊)三盞電燈,按下任意一個開關(guān)均可打開對應(yīng)的一盞電燈,因剛搬進(jìn)新房不久,不熟悉情況.

1)若小明任意按下一個開關(guān),則小明打開走廊燈的概率是多少?

2)若任意按下一個開關(guān)后,再按下另兩個開關(guān)中的一個,則正好客廳燈和走廊燈同時亮的概率是多少?請用樹狀圖法或列表法加以說明.

【答案】1;(2

【解析】

1)直接利用概率公式求解,即可求得答案;

2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與正好客廳燈和走廊燈同時亮的情況,再利用概率公式即可求得答案.

解:(1)小明任意按下一個開關(guān),正好樓梯燈亮的概率是:;,

2)畫樹狀圖得:

∵共有6種等可能的結(jié)果,正好客廳燈和走廊燈同時亮的有2種情況,

∴正好客廳燈和走廊燈同時亮的概率是:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的邊BC在x軸上,頂點A在y軸的正半軸上,OA=2,OB=1,OC=4.

(1)求過A、B、C三點的拋物線的解析式;

(2)設(shè)點M是x軸上的動點,試問:在平面直角坐標(biāo)系中,是否存在點N,使得以點A,B,M,N為頂點的四邊形是菱形?若存在,直接寫出點N的坐標(biāo);若不存在,說明理由;

(3)若拋物線對稱軸交x軸于點P,在平面直角坐標(biāo)系中,是否存在點Q,使PAQ是以PA為腰的等腰直角三角形?若存在,寫出所有符合條件的點Q的坐標(biāo),選擇一種情況加以說明;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,半徑OCAB于點O,點D的中點,連接CDOD、BD.下列四個結(jié)論:①ACOD;②CDBD;③△ODE∽△CAE;④∠ADC=∠BOD.其中正確結(jié)論的序號是( )

A.①②③④B.①②④C.②③D.①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“微信運動”被越來越多的人關(guān)注和喜愛,某興趣小組隨機調(diào)查了某市名教師某日“微信運動”中的步數(shù)情況并進(jìn)行統(tǒng)計整理,繪制了如下的統(tǒng)計圖表(不完整) :請根據(jù)以上信息,解答下列問題

寫出的值;

補全頻數(shù)分布直方圖;

若該市約有名教師,估計日行走步數(shù)超過萬步(包含萬步)的教師約有多少名?

步數(shù)(萬步)

頻數(shù)

頻率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解初中學(xué)生每天在校體育活動的時間(單位:),隨機調(diào)查了該校的部.分學(xué)生,根據(jù)調(diào)查結(jié)果繪制出如下統(tǒng)計圖:

1)求調(diào)查的學(xué)生是多少人? .

2)求調(diào)查的學(xué)生每天在校體育活動時間的平均數(shù)、眾數(shù);

3)若該校有名初中學(xué)生,估計該校每天在校體育活動時間大于的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線上有兩點,,連接,,,直線軸于點,點到兩坐標(biāo)軸的距離相等.點到兩坐標(biāo)軸的距離也相等.

1)求點,的坐標(biāo)并直接寫出的形狀;

2)若點為線段上的一個動點(不與點,重合),連接,當(dāng)為等腰三角形時,求點的坐標(biāo);

3)若點軸上一動點,當(dāng)是以為斜邊的直角三角形時,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于點,點,與y軸交于點C,且過點.點P、Q是拋物線上的動點.

(1)求拋物線的解析式;

(2)當(dāng)點P在直線OD下方時,求面積的最大值.

(3)直線OQ與線段BC相交于點E,當(dāng)相似時,求點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ACB=90°,BC=AC=2,將ABC繞點A順時針方向旋轉(zhuǎn)α(0°α180°)AB'C'的位置.

問題探究:

1)如圖1,當(dāng)旋轉(zhuǎn)角為60°時,連接C'CAB交于點M,則C'C=   ,  

2)如圖2,在(1)條件下,連接BB',延長CC'BB'于點D,求CD的長.

問題解決:

3)如圖3,在旋轉(zhuǎn)的過程中,連線CC'、BB'CC'所在直線交BB'于點D,那么CD的長有沒有最大值?如果有,求出CD的最大值:如果沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,四邊形OABC是正方形,點AC 在坐標(biāo)軸上,點B,),P是射線OB上一點,將繞點A順時針旋轉(zhuǎn)90°,得,Q是點P旋轉(zhuǎn)后的對應(yīng)點.

1)如圖(1)當(dāng)OP = 時,求點Q的坐標(biāo);

2)如圖(2),設(shè)點P,)(),的面積為S. S的函數(shù)關(guān)系式,并寫出當(dāng)S取最小值時,點P的坐標(biāo);

3)當(dāng)BP+BQ = 時,求點Q的坐標(biāo)(直接寫出結(jié)果即可)

查看答案和解析>>

同步練習(xí)冊答案