【題目】下列說法錯誤的是( 。
A. 5是25的算術(shù)平方根B. ﹣1是1的一個平方根
C. 9的立方根是3D. 0的平方根與算術(shù)平方根都是0
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,是真命題的是( 。
A.四條邊相等的四邊形是矩形
B.對角線互相平分的四邊形是矩形
C.四個角相等的四邊形是矩形
D.對角線相等的四邊形是矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一組數(shù)椐:3,4,5,6,6,則下列四個結(jié)論中正確的是( )
A.這組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)分別是4.8,6,6
B.這組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)分別是5,5,5
C.這組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)分別是4.8,6,5
D.這組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)分別是5,6,6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有下列說法:①電線桿可看做射線,②探照燈光線可看做射線,③A地到B地的高速公路可看做一條直線.其中正確的有( 。
A. 0個
B.1個
C.2個
D.3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】十九大報告中提出“廣泛開展全民健身活動,加快推進(jìn)體育強(qiáng)國建設(shè)”.為了響應(yīng)號召,提升學(xué)生訓(xùn)練興趣,某中學(xué)自編“功夫扇”課間操.若設(shè)最外側(cè)兩根大扇骨形成的角為∠COD,當(dāng)“功夫扇”完全展開時∠COD=160°.在扇子舞動過程中,扇釘O始終在水平線AB上.
小華是個愛思考的孩子,不但將以上實際問題抽象為數(shù)學(xué)問題,而且還在抽象出的圖中畫出了∠BOC 的平分線OE,以便繼續(xù)探究.
(1)當(dāng)扇子完全展開且一側(cè)扇骨OD呈水平狀態(tài)時,如圖1所示.請在抽象出的圖2中畫出∠BOC 的平分線OE,此時∠DOE的度數(shù)為 ;
(2)“功夫扇”課間操有一個動作是把扇子由圖1旋轉(zhuǎn)到圖3所示位置,即將圖2中的∠COD繞點O旋轉(zhuǎn)至圖4所示位置,其他條件不變,小華嘗試用如下兩種方案探究了∠AOC和∠DOE度數(shù)之間的關(guān)系.
方案一:設(shè)∠BOE的度數(shù)為x.
可得出,則.
,則.
進(jìn)而可得∠AOC和∠DOE度數(shù)之間的關(guān)系.
方案二:如圖5,過點O作∠AOC的平分線OF.
易得,即.
由,可得.
進(jìn)而可得∠AOC和∠DOE度數(shù)之間的關(guān)系.
參考小華的思路可得∠AOC和∠DOE度數(shù)之間的關(guān)系為 ;
(3)繼續(xù)將扇子旋轉(zhuǎn)至圖6所示位置,即將∠COD繞點O旋轉(zhuǎn)至如圖7所示的位置,其他條件不變,請問(2)中結(jié)論是否依然成立?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線、相交于點, .
()的余角是__________(填寫所有符合要求的角).
()若,求的度數(shù).
(3)若,求的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com