【題目】為了更好的保護(hù)美麗圖畫的邛海濕地,西昌市污水處理廠決定先購買A、B兩型污水處理設(shè)備共20臺,對邛海濕地周邊污水進(jìn)行處理,每臺A型污水處理設(shè)備12萬元,每臺B型污水處理設(shè)備10萬元.已知1臺A型污水處理設(shè)備和2臺B型污水處理設(shè)備每周可以處理污水640噸,2臺A型污水處理設(shè)備和3臺B型污水處理設(shè)備每周可以處理污水1080噸.
(1)求A、B兩型污水處理設(shè)備每周分別可以處理污水多少噸?
(2)經(jīng)預(yù)算,市污水處理廠購買設(shè)備的資金不超過230萬元,每周處理污水的量不低于4500噸,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少?
【答案】
(1)解:設(shè)A型污水處理設(shè)備每周每臺可以處理污水x噸,B型污水處理設(shè)備每周每臺可以處理污水y噸,
解得,
即A型污水處理設(shè)備每周每臺可以處理污水240噸,B型污水處理設(shè)備每周每臺可以處理污水200噸;
(2)解:設(shè)購買A型污水處理設(shè)備x臺,則購買B型污水處理設(shè)備(20﹣x)臺,
則
解得,12.5≤x≤15,
第一種方案:當(dāng)x=13時(shí),20﹣x=7,花費(fèi)的費(fèi)用為:13×12+7×10=226萬元;
第二種方案:當(dāng)x=14時(shí),20﹣x=6,花費(fèi)的費(fèi)用為:14×12+6×10=228萬元;
第三種方案;當(dāng)x=15時(shí),20﹣x=5,花費(fèi)的費(fèi)用為:15×12+5×10=230萬元;
即購買A型污水處理設(shè)備13臺,則購買B型污水處理設(shè)備7臺時(shí),所需購買資金最少,最少是226萬元
【解析】(1)根據(jù)1臺A型污水處理設(shè)備和2臺B型污水處理設(shè)備每周可以處理污水640噸,2臺A型污水處理設(shè)備和3臺B型污水處理設(shè)備每周可以處理污水1080噸,可以列出相應(yīng)的二元一次方程組,從而解答本題;(2)根據(jù)題意可以列出相應(yīng)的不等式組,從而可以得到購買方案,從而可以算出每種方案購買資金,從而可以解答本題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖(a)、圖(b)、圖(c)是三張形狀、大小完全相同的方格紙,方格紙中的每個(gè)小正方形的邊長均為1.請?jiān)趫D(a)、圖(b)、圖(c)中,分別畫出符合要求(1),(2),(3)的圖形,所畫圖形各頂點(diǎn)必須與方格紙中的小正方形頂點(diǎn)重合.
(1)畫一個(gè)底邊為4,面積為8的等腰三角形;
(2)畫一個(gè)面積為10的等腰直角三角形;
(3)畫一個(gè)面積為12的平行四邊形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初中學(xué)生對待學(xué)習(xí)的態(tài)度一直是教育工作者極為關(guān)注的一個(gè)問題.為此市教育局對本市部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個(gè)層級,A級:喜歡;B級:不太喜歡;C級:不喜歡),并將調(diào)查結(jié)果繪制成圖1和圖2的統(tǒng)計(jì)圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了名學(xué)生;
(2)將圖①補(bǔ)充完整;
(3)求出圖②中C級所占的圓心角的度數(shù);
(4)根據(jù)抽樣調(diào)查結(jié)果,請你估計(jì)該市近80000名初中生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級和B級)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某銀行去年新增加居民存款10億元人民幣.
(1)經(jīng)測量,100張面值為100元的新版人民幣大約厚0.9厘米,如果將10億元面值為100元的新版人民幣摞起來,大約有多高?
(2)一臺激光點(diǎn)鈔機(jī)的點(diǎn)鈔速度是8×104張/時(shí),按每天點(diǎn)鈔5小時(shí)計(jì)算,如果讓點(diǎn)鈔機(jī)點(diǎn)一遍10億元面值為100元的新版人民幣,點(diǎn)鈔機(jī)大約要點(diǎn)多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABD中,AB=AD, 將△ABD沿BD翻折,使點(diǎn)A翻折到點(diǎn)C. E是BD上一點(diǎn),且BE>DE,連結(jié)CE并延長交AD于F,連結(jié)AE.
(1)依題意補(bǔ)全圖形;
(2)判斷∠DFC與∠BAE的大小關(guān)系并加以證明;
(3)若∠BAD=120°,AB=2,取AD的中點(diǎn)G,連結(jié)EG,求EA+EG的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=110°,E、F分別是邊AB和BC的中點(diǎn),EP⊥CD于點(diǎn)P,則∠FPC等于( )
A. 45° B. 35° C. 55° D. 50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 在△ABC中,AC=3、AB=4、BC=5, P為BC上一動(dòng)點(diǎn),PG⊥AC于點(diǎn)G,PH⊥AB
于點(diǎn)H,M是GH的中點(diǎn),P在運(yùn)動(dòng)過程中PM的最小值為( )
A. 2.4 B. 1.4
C. 1.3 D. 1.2
【答案】D
【解析】分析: 由AC=3、AB=4、BC=5,得AC2+AB2=BC2,則∠A=90°,再結(jié)合PG⊥AC,PH⊥AB,可證四邊形AGPH是矩形;連接AP,可知當(dāng)AP⊥BC時(shí)AP最短,結(jié)合矩形的兩對角線相等和面積法,求出GH的值,
詳解:∵AC=3、AB=4、BC=5,
∴AC2=9,AB2=16,BC2=25,
∴AC2+AB2=BC2,
∴∠A=90°.
∵PG⊥AC,PH⊥AB,
∴∠AGP=∠AHP=90° ,
∴四邊形AGPH是矩形.
連接AP,
∴GH=AP.
∵當(dāng)AP⊥BC時(shí),AP最短,
∴3×4=5AP,
∴AP=,
∴PM的最小值為1.2.
故選D.
點(diǎn)睛: 本題考查了勾股定理的逆定理,矩形的判定與性質(zhì),垂線段最短,面積法求線段的長,需結(jié)合矩形的判定方法,矩形的性質(zhì)以及三角形面積的知識求解;確定出點(diǎn)P的位置是解答本題的關(guān)鍵.
【題型】單選題
【結(jié)束】
18
【題目】計(jì)算:
(1) (2)
(3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如圖1,點(diǎn)M,N把線段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個(gè)直角三角形,則稱點(diǎn)M,N是線段AB的勾股分割點(diǎn).
請解決下列問題:
(1)已知點(diǎn)M,N是線段AB的勾股分割點(diǎn),且BN>MN>AM.若AM=2,MN=3,求BN的長;
(2)如圖2,若點(diǎn)F、M、N、G分別是AB、AD、AE、AC邊上的中點(diǎn),點(diǎn)D,E是線段BC的勾股分割點(diǎn),且EC>DE>BD,求證:點(diǎn)M,N是線段FG的勾股分割點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com