如圖,在正方形ABCD中,AB=4,點(diǎn)E是邊CD上的任意一點(diǎn)(不與C、D重合),將△ADE沿AE翻折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG.
(1)求證:△ABG≌△AFG;
(2)若設(shè)DE=x,BG=y,求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)連接CF,若AGCF,求DE的長.
(1)證明:∵四邊形ABCD為正方形,
∴∠D=∠B=90°,AB=AD,
∵△ADE沿AE翻折至△AFE,
∴AD=AF,∠D=∠AFE=90°,
∴AB=AF,
在Rt△ABG和Rt△AFG中
AB=AF
AG=AG

∴△ABG≌△AFG(HL);

(2)∵△ADE≌△AFE,△ABG≌△AFG,
∴BG=FG,DE=FE,
∴EG=FE+FG,
∵AB=4,
∴BC=CD=4,
∵DE=x,BG=y,
∴EC=4-x,GE=x+y,GC=4-y,
∴在Rt△EGC中,CG2+CE2=GE2,
∴(4-y)2+(4-x)2=(x+y)2
∴y=
-4x+16
x+4
(0<x<4);

(3)∵AGCF,
∴∠AGB=∠FCG,∠AGF=∠GFC,
∵△ABG≌△AFG,
∴∠AGB=∠AGF,
∴∠FCG=∠GFC,
∴CG=GF,
∴y=4-y,解得y=2,
把y=2代入y=
-4x+16
x+4
-4x+16
x+4
=2,解得x=
4
3
,
∴DE=
4
3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)E在正方形ABCD的邊CD上運(yùn)動,AC與BE交于點(diǎn)F.
(1)如圖1,當(dāng)點(diǎn)E運(yùn)動到DC的中點(diǎn)時,求△ABF與四邊形ADEF的面積之比;
(2)如圖2,當(dāng)點(diǎn)E運(yùn)動到CE:ED=2:1時,求△ABF與四邊形ADEF的面積之比;
(3)當(dāng)點(diǎn)E運(yùn)動到CE:ED=3:1時,寫出△ABF與四邊形ADEF的面積之比;當(dāng)點(diǎn)E運(yùn)動到CE:ED=n:1(n是正整數(shù))時,猜想△ABF與四邊形ADEF的面積之比(只寫結(jié)果,不要求寫出計算過程);
(4)請你利用上述圖形,提出一個類似的問題

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知正方形ABCD,點(diǎn)E在BC邊上,將△DCE繞某點(diǎn)G旋轉(zhuǎn)得到△CBF,點(diǎn)F恰好在AB邊上.
(1)請畫出旋轉(zhuǎn)中心G(保留畫圖痕跡),并連接GF,GE;
(2)若正方形的邊長為2a,當(dāng)CE=______時,S△FGE=S△FBE;當(dāng)CE=______時,S△FGE=3S△FBE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方形ABCD中,E是正方形內(nèi)一點(diǎn),F(xiàn)是正方形外一點(diǎn),且∠EDC=∠FBC,EC⊥CF.
(1)求證:EC=FC;
(2)當(dāng)BE:CE=1:2,∠BEC=135°時,求tan∠FBE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:在△ABC中,∠ACB=90°,AC=BC,現(xiàn)將一塊邊長足夠大的直角三角板的直角頂點(diǎn)置于AB的中點(diǎn)O處,兩直角邊分別經(jīng)過點(diǎn)B、C,然后將三角板繞點(diǎn)O按順時針方向旋轉(zhuǎn)一個角度反(0°<a<90°),旋轉(zhuǎn)后,直角三角板的直角邊分別與AC、BC相交于點(diǎn)K、H,四邊形CHOK是旋轉(zhuǎn)過程中三角板與△ABC的重疊部分(如圖1所示).那么,在上述旋轉(zhuǎn)過程中:
(1)如圖1,線段BH與CK具有怎樣的數(shù)量關(guān)系?四邊形CHOK的面積是否發(fā)生變化?請說明你發(fā)現(xiàn)的結(jié)論的理由.
(2)如圖2,連接HK,
①若AK=12,BH=5,求△OKH的面積;
②若AC=BC=4,設(shè)BH=x,當(dāng)△CKH的面積為2時,求x的值,并說出此時四邊形CHOK是什么特殊四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在正方形ABCD中,E、F分別是邊CD、AD上的點(diǎn),且CE=DF.AE與BF相交于點(diǎn)O,則下列結(jié)論錯誤的是( 。
A.AE=BFB.AE⊥BF
C.AO=OED.S△AOB=S四邊形DEOF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在正方形ABCD中,點(diǎn)E、F分別在CD、BC上,且BF=CE,連結(jié)BE、AF相交于點(diǎn)G,則下列結(jié)論:①BE=AF;②∠DAF=∠BEC;③∠AFB+∠BEC=90°;④AF⊥BE中正確的有( 。
A.①②③B.②③④C.①②③④D.①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在正方形ABCD中,AC、BD交于點(diǎn)O,OE⊥DC于點(diǎn)E,若OE=2cm,則正方形ABCD的面積為______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若正方形的邊長為4,則它的對角線長是______.

查看答案和解析>>

同步練習(xí)冊答案