【題目】如圖,已知雙曲線y=(x>0)圖象上兩點,過A、B兩點分別作x軸、y軸的垂線,垂足分別為C、D,連接AD、BC,則:

(1)若A、B兩點的坐標(biāo)分別是(1,4)、(4,1),求SOAB;

(2)證明:SABD=SABC

(3)連接CD,判斷CDAB的位置關(guān)系,并說明理由.

【答案】(1)見解析;(2)見解析;(3)CDAB,理由見解析

【解析】

(1)作BHx軸于H,如圖,利用圖形得到SOAB+SOBH=SAOC+S梯形ACHB,根據(jù)反比例函數(shù)k的幾何意義得SOBH=SAOC,所以SOAB=S梯形ACHB,然后根據(jù)梯形得面積公式求解;

(2)根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征,設(shè)A(a,),B(b,),然后根據(jù)三角形面積公式可得SABD=SABC=k;

(3)由于SABD=SABC,根據(jù)三角形面積公式得到點C點和點DAB的距離相等,所以CDAB.

(1)解:作BHx軸于H,如圖,

SOAB+SOBH=SAOC+S梯形ACHB,

SOBH=SAOC

SOAB=S梯形ACHB=×(1+4)×(4﹣1)=;

(2)證明:設(shè)A(a,),B(b,),

SABD=b()=k,

SABC=(b﹣a)=k,

SABD=SABC

(3)解:CDAB.理由如下:

SABD=SABC,

CDAB.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象過點A(3,0),C(﹣1,0).

(1)求二次函數(shù)的解析式;

(2)如圖,點P是二次函數(shù)圖象的對稱軸上的一個動點,二次函數(shù)的圖象與y軸交于點B,當(dāng)PB+PC最小時,求點P的坐標(biāo);

(3)在第一象限內(nèi)的拋物線上有一點Q,當(dāng)△QAB的面積最大時,求點Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)yaxaya≠0)在同一直角坐標(biāo)系中的圖象可能是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B兩點在正方形網(wǎng)格的格點上,每個方格都是邊長為1的正方形.點C也在格點上,且△ABC為等腰三角形,則符合條件的點C有( )個.

A.3B.5C.8D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,E為CD的中點,AE的垂直平分線分別交AD,BC及AB的延長線于點F,G,H,連接HE,HC,OD,連接CO并延長交AD于點M.則下列結(jié)論中:

①FG=2AO;②OD∥HE;③;④2OE2=AHDE;⑤GO+BH=HC

正確結(jié)論的個數(shù)有(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E∠AOB的平分線上一點,EC⊥OA,ED⊥OB,垂足分別為C、D.

求證:(1)∠ECD=∠EDC;

(2)OC=OD;

(3)OE是線段CD的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在鈍角△ABC中,∠C=45°,AE⊥BC,垂足為E點,且ABAC的長度為方程x2﹣9x+18=0的兩個根,⊙O△ABC的外接圓.

求:(1)⊙O的半徑;

(2)BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO的直徑,∠ACB的平分線交AB于點D,交O于點E,過點CO的切線CPBA的延長線于點P,連接AE

(1)求證:PCPD;

(2)若AC=6cm,BC=8cm,求線段AE、CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形的面積為28,對角線交于點;以、為鄰邊作平行四邊形,對角線交于點;以、為鄰邊作平行四邊形;…依此類推,則平行四邊形的面積為( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案