精英家教網 > 初中數學 > 題目詳情
閱讀下面第(1)題解法,計算第(2)題。
(1)計算
[解]原式=
,
上述方法叫拆項法。
(2)計算。
解:(2)原式=(4+0.5)+[(-2)+(-0.5)]+
=[4 +(-2)+9+(-15)+2] +
=-2+0+0=-2。
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:閱讀理解

(2001•黃岡)先閱讀下列第(1)題的解答過程:
(1)已知a,β是方程x2+2x-7=0的兩個實數根,求a2+3β2+4β的值.
解法1:∵a,β是方程x2+2x-7=0的兩個實數根,
∴a2+2a-7=0,β2+2β-7=0,且a+β=-2.
∴a2=7-2a,β2=7-2β.
∴a2+3β2+4β=7-2a+3(7-2β)+4β=28-2(a+β)=28-2×(-2)=32.
解法2:由求根公式得a=1+2
2
,β=-1-2
2

∴a2+3β2+4β=(-1+2
2
2+3(-1-2
2
2+4(-1-2
2

=9-4
2
+3(9+4
2
)-4-8
2
=32.
當a=-1-2
2
,β=-1+2
2
時,同理可得a2+3β2+4β=32.
解法3:由已知得a+β=-2,aβ=-7.
∴a22=(a+β)2-2aβ=18.
令a2+3β2+4β=A,β2+3a2+4a=B.
∴A+B=4(a22)+4(a+β)=4×18+4×(-2)=64.①
A-B=2(β2-a2)+4(β-a)=2(β+a)(β-a)+4(β-a)=0.②
①+②,得2A=64,∴A=32.
請仿照上面的解法中的一種或自己另外尋注一種方法解答下面的問題:
(2)已知x1,x2是方程x2-x-9=0的兩個實數根,求代數式x13+7x22+3x2-66的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

閱讀下面第(1)題的解答過程,然后解答第(2)題.
(1)已知-2xm+5ny5與4x2ym-3n是同類項,求m+n的值.
解:根據同類項的意義,可知x的指數相同,即:m+5n=2.y的指數也相同,即m-3n=5.
所以:(m+5n)+(m-3n)=2+5,即:2m+2n=2(m+n)=7
所以:m+n=
7
2

(2)已知xm-3ny7-
1
2
x3y3m+11n
是同類項,求m+2n的值.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

閱讀下面第(1)題的解答過程,然后解答第(2)題.
(1)已知-2xm+5ny5與4x2ym-3n是同類項,求m+n的值.
解:根據同類項的意義,可知x的指數相同,即:m+5n=2.y的指數也相同,即m-3n=5.
所以:(m+5n)+(m-3n)=2+5,即:2m+2n=2(m+n)=7
所以:數學公式
(2)已知xm-3ny7數學公式是同類項,求m+2n的值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

閱讀下面第(1)題的解答過程,然后解答第(2)題.
(1)已知-2xm+5ny5與4x2ym-3n是同類項,求m+n的值.
根據同類項的意義,可知x的指數相同,即:m+5n=2.y的指數也相同,即m-3n=5.
所以:(m+5n)+(m-3n)=2+5,即:2m+2n=2(m+n)=7
所以:m+n=
7
2

(2)已知xm-3ny7-
1
2
x3y3m+11n
是同類項,求m+2n的值.

查看答案和解析>>

同步練習冊答案