【題目】如圖,,,試問與平行嗎?為什么?
下面是說明的過程,請在( )內(nèi)寫上理由.
解:,( )
( )
又, (等量代換)
( )
【答案】內(nèi)錯角相等,兩直線平行;兩直線平行,同位角相等;同旁內(nèi)角互補(bǔ),兩直線平行.
【解析】
根據(jù)平行線的性質(zhì)求出∠ADF=∠EFC,求出∠ADF+∠C=180°,再根據(jù)平行線的判定推出即可.
解:AD∥BC,
理由是:∵∠ADE=∠DEF,
∴AD∥EF(內(nèi)錯角相等,兩直線平行),
∴∠ADF=∠EFC(兩直線平行,同位角相等),
又∠EFC+∠C=180°,
∴∠ADF+∠C=180°(等量代換)
∴AD∥BC(同旁內(nèi)角互補(bǔ),兩直線平行),
故答案為:內(nèi)錯角相等,兩直線平行,兩直線平行,同位角相等,同旁內(nèi)角互補(bǔ),兩直線平行.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B、C重合).以AD為邊作正方形ADEF,連接CF.
(1)如圖1,當(dāng)點D在線段BC上時,請直接寫出線段BD與CF的數(shù)量關(guān)系: ;
(2)如圖2,當(dāng)點D在線段BC的延長線上時,其它條件不變,若AC=2,CD=1,則CF= ;
(3)如圖3,當(dāng)點D在線段BC的反向延長線上時,且點A、F分別在直線BC的兩側(cè),其它條件不變:
①請直接寫出CF、BC、CD三條線段之間的關(guān)系: ;
②若連接正方形對角線AE、DF,交點為O,連接OC,探究△AOC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小明在數(shù)學(xué)課外小組活動時遇到這樣一個問題:
如果一個不等式中含有絕對值,并且絕對值符號中含有未知數(shù),我們把這個不等式叫做絕對值不等式,求絕對值不等式|x|>3的解集.
小明同學(xué)的思路如下:
先根據(jù)絕對值的定義,求出|x|恰好是3時x的值,并在數(shù)軸上表示為點A,B,如圖所示.觀察數(shù)軸發(fā)現(xiàn),以點A,B為分界點把數(shù)軸分為三部分:
點A左邊的點表示的數(shù)的絕對值大于3;
點A,B之間的點表示的數(shù)的絕對值小于3;
點B右邊的點表示的數(shù)的絕對值大于3.
因此,小明得出結(jié)論絕對值不等式|x|>3的解集為:x<-3或x>3.
參照小明的思路,解決下列問題:
(1)請你直接寫出下列絕對值不等式的解集.
①|(zhì)x|>1的解集是 .
②|x|<2.5的解集是 .
(2)求絕對值不等式2|x-3|+5>13的解集.
(3)直接寫出不等式x2>4的解集是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=-x2+bx+c與x軸相交于點A,C,與y軸相交于點B,連接AB,BC,點A的坐標(biāo)為(2,0),tan∠BAO=2,以線段BC為直徑作⊙M交AB于點D,過點B作直線l∥AC,與拋物線和⊙M的另一個交點分別是E,F(xiàn).
(1)求該拋物線的函數(shù)表達(dá)式;
(2)求點C的坐標(biāo)和線段EF的長;
(3)如圖2,連接CD并延長,交直線l于點N,點P,Q為射線NB上的兩個動點(點P在點Q的右側(cè),且不與N重合),線段PQ與EF的長度相等,連接DP,CQ,四邊形CDPQ的周長是否有最小值?若有,請求出此時點P的坐標(biāo)并直接寫出四邊形CDPQ周長的最小值;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(-4,n)、B(2,-6)是一次函數(shù)y1=k1x+b與反比例函數(shù)y2=的兩個交點,直線AB與x軸交于點C。
(1)求兩函數(shù)解析式;(2)求△AOB的面積;
(3)根據(jù)圖象回答:y1<y2時,自變量x的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O為矩形ABCD的對稱中心,AB=10cm,BC=12cm.點E,F,G分別從A,B,C三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點F的運動速度為3cm/s,點G的運動速度為xcm/s.當(dāng)點F到達(dá)點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,△EBF關(guān)于直線EF的對稱圖形是△EB'F,設(shè)點E,F,G運動的時間為t(單位:s).
(1)當(dāng)t= s時,四邊形EBFB'為正方形;
(2)當(dāng)x為何值時,以點E,B,F為頂點的三角形與以點F,C,G為頂點的三角形可能全等?
(3)是否存在實數(shù)t,使得點B'與點O重合?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點D(5,3)在邊AB上,以C為中心,把△CDB旋轉(zhuǎn)90°,則旋轉(zhuǎn)后點D的對應(yīng)點D′的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD的頂點A、D分別落在x軸、y軸,OD=2OA=6,AD:AB=3:1.則點B的坐標(biāo)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,拋物線y=ax2+bx+c (a≠O)與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,點A的坐標(biāo)為(-4,O),拋物線的對稱軸是直線x=-3,且經(jīng)過A、C兩點的直線為y=kx+4.
(1)求拋物線的函數(shù)表達(dá)式;
(2)將直線AC向下平移m個單位長度后,得到的直線l與拋物線只有一個交點D,求m的值;
(3)拋物線上是否存在點Q,使點Q到直線AC的距離為?若存在,請直接寫出Q的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com