【題目】計(jì)算題
(1) ﹣(2017﹣π)0﹣4cos45°+(﹣3)2
(2)先化簡,再求代數(shù)式 ﹣ ÷ 的值,其中a=3tan30°﹣2.
【答案】
(1)解: ﹣(2017﹣π)0﹣4cos45°+(﹣3)2
=
=
=8;
(2)解: ﹣ ÷
=
=
= ,
當(dāng)a=3tan30°﹣2=3× = 時(shí),
【解析】(1)根據(jù)零指數(shù)冪和特殊角的三角函數(shù)值可以解答本題;(2)根據(jù)分式的除法和減法可以化簡題目中的式子,然后將a的值代入即可解答本題.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用零指數(shù)冪法則和特殊角的三角函數(shù)值的相關(guān)知識可以得到問題的答案,需要掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,2,3分別以△ABC的AB和AC為邊向△ABC外作正三角形(等邊三角形)、正四邊形(正方形)、正五邊形,BE和CD相交于點(diǎn)O.
(1)在圖1中,求證:△ABE≌△ADC.
(2)由(1)證得△ABE≌△ADC,由此可推得在圖1中∠BOC=120°,請你探索在圖2中,∠BOC的度數(shù),并說明理由或?qū)懗鲎C明過程.
(3)填空:在上述(1)(2)的基礎(chǔ)上可得在圖3中∠BOC=(填寫度數(shù)).
(4)由此推廣到一般情形(如圖4),分別以△ABC的AB和AC為邊向△ABC外作正n邊形,BE和CD仍相交于點(diǎn)O,猜想得∠BOC的度數(shù)為(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】龜兔賽跑,它們從同一地點(diǎn)同時(shí)出發(fā),不久兔子就把烏龜遠(yuǎn)遠(yuǎn)地甩在后面,于是兔子便得意洋洋地躺在一棵大樹下睡起覺來.烏龜一直在堅(jiān)持不懈、持之以恒地向終點(diǎn)跑著,兔子一覺醒來,看見烏龜快接近終點(diǎn)了,這才慌忙追趕上去,但最終輸給了烏龜.下列圖象中能大致反映龜兔行走的路程S隨時(shí)間t變化情況的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知A(﹣4,0),B(1,0),且以AB為直徑的圓交y軸的正半軸于點(diǎn)C(0,2),過點(diǎn)C作圓的切線交x軸于點(diǎn)D.
(1)求過A,B,C三點(diǎn)的拋物線的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)設(shè)平行于x軸的直線交拋物線于E,F(xiàn)兩點(diǎn),問:是否存在以線段EF為直徑的圓,恰好與x軸相切?若存在,求出該圓的半徑;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O直徑,C、D為⊙O上不同于A、B的兩點(diǎn),∠ABD=2∠BAC,連接CD.過點(diǎn)C作CE⊥DB,垂足為E,直線AB與CE相交于F點(diǎn).
(1)求證:CF為⊙O的切線;
(2)當(dāng)BF=5,sinF= 時(shí),求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了維護(hù)海洋權(quán)益,新組建的國家海洋局加大了在南海的巡邏力度,一天,我兩艘海監(jiān)船剛好在我某島東西海岸線上的A、B兩處巡邏,同時(shí)發(fā)現(xiàn)一艘不明國籍的船只停在C處海域.如圖所示,AB=60( )海里,在B處測得C在北偏東45°的方向上,A處測得C在北偏西30°的方向上,在海岸線AB上有一燈塔D,測得AD=120( )海里.
(1)分別求出A與C及B與C的距離AC、BC(結(jié)果保留根號)
(2)已知在燈塔D周圍100海里范圍內(nèi)有暗礁群,我在A處海監(jiān)船沿AC前往C處盤查,圖中有無觸礁的危險(xiǎn)?
(參考數(shù)據(jù): =1.41, =1.73, =2.45)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖③所示,圖象過點(diǎn)(﹣1,0),對稱軸為直線x=2,則下 列結(jié)論中正確的個(gè)數(shù)有( ) ①4a+b=0;
②9a+3b+c<0;
③若點(diǎn)A(﹣3,y1),點(diǎn)B(﹣ ,y2),點(diǎn)C(5,y3)在該函數(shù)圖象上,則y1<y3<y2;
④若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2 , 且x1<x2 , 則x1<﹣1<5<x2 .
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在圖1﹣﹣圖4中,菱形ABCD的邊長為3,∠A=60°,點(diǎn)M是AD邊上一點(diǎn),且DM= AD,點(diǎn)N是折線AB﹣BC上的一個(gè)動點(diǎn).
(1)如圖1,當(dāng)N在BC邊上,且MN過對角線AC與BD的交點(diǎn)時(shí),則線段AN的長度為 .
(2)當(dāng)點(diǎn)N在AB邊上時(shí),將△AMN沿MN翻折得到
△A′MN,如圖2,
①若點(diǎn)A′落在AB邊上,則線段AN的長度為 ;
②當(dāng)點(diǎn)A′落在對角線AC上時(shí),如圖3,求證:四邊形AM A′N是菱形;
③當(dāng)點(diǎn)A′落在對角線BD上時(shí),如圖4,求 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com