【題目】已知,如圖,點(diǎn)Mx軸上,以點(diǎn)M為圓心,2.5長(zhǎng)為半徑的圓交y軸于A、B兩點(diǎn),交x軸于Cx1,0)、Dx2,0)兩點(diǎn),(x1x2),x1x2是方程x2x+1=x+22的兩根.

1)求點(diǎn)C、D及點(diǎn)M的坐標(biāo);

2)若直線y=kx+b切⊙M于點(diǎn)A,交x軸于P,求PA的長(zhǎng);

3M上是否存在這樣的點(diǎn)Q,使點(diǎn)Q、A、C三點(diǎn)構(gòu)成的三角形與AOC相似?若存在,請(qǐng)求出點(diǎn)的坐標(biāo),并求出過(guò)A、C、Q三點(diǎn)的拋物線的解析式;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1) C1,0),D40),(1.50);(2) ;(3) 過(guò)A、C、Q三點(diǎn)的拋物線的解析式為:y=x2+x+2

【解析】解:(1)x(2x+1)=(x+2)2整理得,x23x﹣4=0,

解得x1=﹣1,x2=4,

點(diǎn)C、D的坐標(biāo)是C(﹣1,0),D(4,0),

=1.5,

點(diǎn)M的坐標(biāo)是(1.5,0),

故答案為:C(﹣1,0),D(4,0),(1.5,0);

(2)如圖,連接AM,則AM=2.5,

RtAOM中,AO==2,

點(diǎn)A的坐標(biāo)是(0,2),

PAM相切,

AMPA

∴∠MAO+∠PAO=90°,

∵∠AMO+∠MAO,

∴∠AMO=∠PAO,

AOMPOA中,

∴△AOM∽△POA,

,

,

解得PA=

(3)存在.

如圖,連接AC、AD

∴∠CAD=90°,

ACODCA中, ,

∴△ACO∽△DCA,

存在點(diǎn)Q,與點(diǎn)D重合時(shí),點(diǎn)Q、A、C三點(diǎn)構(gòu)成的三角形與AOC相似,

此時(shí),設(shè)過(guò)點(diǎn)A、C、Q的拋物線是y=ax2+bx+c

,

解得,

過(guò)A、C、Q三點(diǎn)的拋物線的解析式為:y=x2+x+2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)yax2+2ax-3a的圖像與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右邊),與y軸交于點(diǎn)C

(1)請(qǐng)直接寫(xiě)出A、B兩點(diǎn)的坐標(biāo):A , B

(2)若以AB為直徑的圓恰好經(jīng)過(guò)這個(gè)二次函數(shù)圖像的頂點(diǎn).

①求這個(gè)二次函數(shù)的表達(dá)式;

②若P為二次函數(shù)圖像位于第二象限部分上的一點(diǎn),過(guò)點(diǎn)PPQ平行于y軸,交直線BC于點(diǎn)Q.連接OQ、AQ,是否存在一個(gè)點(diǎn)P,使tanOQA?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某糕點(diǎn)廠中秋節(jié)前要制作一批盒裝月餅,每盒中裝2塊大月餅和4塊小月餅.制作1塊大月餅要用0.05kg面粉,1塊小月餅要用0.02kg面粉.現(xiàn)共有面粉4500kg,問(wèn)制作兩種月餅應(yīng)各用多少面粉,才能生產(chǎn)最多的盒裝月餅?(用一元一次方程解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上A點(diǎn)表示數(shù)-3,B點(diǎn)表示數(shù)bC點(diǎn)表示數(shù)c,且b.c滿足

1b= c=

2)若使C.B兩點(diǎn)的距離是A.B兩點(diǎn)的距離的2倍,則需將點(diǎn)C向左移動(dòng) 個(gè)單位長(zhǎng)度.

3)點(diǎn)A.B.C開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn)A以每秒m個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒2個(gè)單位長(zhǎng)度和5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒;

①點(diǎn)A.B.C表示的數(shù)分別是 . . (用含m.t的代數(shù)式表示);

②若點(diǎn)B與點(diǎn)C之間的距離表示為d1,點(diǎn)A與點(diǎn)B之間的距離表示為d2,當(dāng)m為何值時(shí),2d1d2的值不會(huì)隨著時(shí)間t的變化而改變,并求出此時(shí)2d1d2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】南崗區(qū)某中學(xué)的王老師統(tǒng)計(jì)了本校九年一班學(xué)生參加體育達(dá)標(biāo)測(cè)試的報(bào)名情況,并把統(tǒng)計(jì)的數(shù)據(jù)繪制成了不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.根據(jù)圖中提供的數(shù)據(jù)回答下列問(wèn)題:

(1)該學(xué)校九年一班參加體育達(dá)標(biāo)測(cè)試的學(xué)生有多少人?

(2)補(bǔ)全條形統(tǒng)計(jì)圖的空缺部分;

(3)若該年級(jí)有1200名學(xué)生,估計(jì)該年級(jí)參加仰臥起坐達(dá)標(biāo)測(cè)試的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中考科目已經(jīng)發(fā)生變革,繼中考增加體育實(shí)驗(yàn)之后,從2019年開(kāi)始河南中考開(kāi)始增設(shè)生物和地理科目,針對(duì)于此學(xué)校教務(wù)處王老師負(fù)責(zé)調(diào)查學(xué)生對(duì)此變革是否有壓力,設(shè)置問(wèn)題答案如下(A:大,B:一般,C:無(wú)),再將調(diào)查結(jié)果制成兩幅不完統(tǒng)計(jì)圖(如圖所示),請(qǐng)根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:

(1)本次調(diào)查中,王老師一共調(diào)查了   名學(xué)生;

(2)將條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)為了緩解學(xué)生壓力,王老師從被調(diào)查的A類和B類學(xué)生中分別選取一名學(xué)生進(jìn)行詳細(xì)心理調(diào)查,請(qǐng)用合適的方法恰好選中一名男生和一名學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a是最大的負(fù)整數(shù),b-5的相反數(shù),c=-|-2|,且ab、c分別是點(diǎn)AB、C在數(shù)軸上對(duì)應(yīng)的數(shù).


1)求a、b、c的值,并在數(shù)軸上標(biāo)出點(diǎn)AB、C
2)若動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿?cái)?shù)軸正方向運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)從點(diǎn)B出發(fā)也沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)P的速度是每秒3個(gè)單位長(zhǎng)度,點(diǎn)Q的速度是每秒1個(gè)單位長(zhǎng)度,求運(yùn)動(dòng)幾秒后,點(diǎn)P可以追上點(diǎn)Q?
3)在數(shù)軸上找一點(diǎn)M,使點(diǎn)MA、B、C三點(diǎn)的距離之和等于12,請(qǐng)求出所有點(diǎn)M對(duì)應(yīng)的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】周末,小明從家步行去書(shū)店看書(shū).出發(fā)小時(shí)后距家1.8千米時(shí),爸爸駕車從家沿相同路線追趕小明,在地追上小明后,二人駕車?yán)^續(xù)前行到達(dá)書(shū)店.小明在書(shū)店看書(shū),爸爸去單位地辦事.如圖是小明與爸爸兩人之間距離(千米)與小明出發(fā)的時(shí)間(小時(shí))之間的函數(shù)圖象,(小明步行速度與爸爸駕車速度始終保持不變,彼此交流時(shí)間忽略不計(jì)),請(qǐng)根據(jù)圖象回答下列問(wèn)題:

1)小明步行速度是_____千米/小時(shí),爸爸駕車速度是______千米/小時(shí):

2)圖中點(diǎn)的坐標(biāo)是______

3)求書(shū)店與家的路程;

4)求爸爸出發(fā)多長(zhǎng)時(shí)間,兩人相距3千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過(guò)O點(diǎn)作射線OC,使∠AOC:∠BOC=1:2,將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角板繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)至圖2的位置,使得ON落在射線OB上,此時(shí)三角板旋轉(zhuǎn)的角度為   度;

(2)繼續(xù)將圖2中的三角板繞點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)至圖3的位置,使得ON在∠AOC的內(nèi)部.試探究∠AOM與∠NOC之間滿足什么等量關(guān)系,并說(shuō)明理由;

(3)在上述直角三角板從圖1逆時(shí)針旋轉(zhuǎn)到圖3的位置的過(guò)程中,若三角板繞點(diǎn)O按15°每秒的速度旋轉(zhuǎn),當(dāng)直角三角板的直角邊ON所在直線恰好平分∠AOC時(shí),求此時(shí)三角板繞點(diǎn)O的運(yùn)動(dòng)時(shí)間t的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案