【題目】如圖所示,該小組發(fā)現(xiàn)8米高旗桿DE的影子EF落在了包含一圓弧型小橋在內(nèi)的路上,于是他們開展了測算小橋所在圓的半徑的活動.小剛身高1.6米,測得其影長為2.4米,同時測得EG的長為3米,HF的長為1米,測得拱高(弧GH的中點(diǎn)到弦GH的距離,即MN的長)為2米,求小橋所在圓的半徑.

【答案】解:∵小剛身高1.6米,測得其影長為2.4米, ∴8米高旗桿DE的影子為:12m,
∵測得EG的長為3米,HF的長為1米,
∴GH=12﹣3﹣1=8(m),
∴GM=MH=4m.
如圖,設(shè)小橋的圓心為O,連接OM、OG.

設(shè)小橋所在圓的半徑為r,
∵M(jìn)N=2m,
∴OM=(r﹣2)m.
在Rt△OGM中,由勾股定理得:
∴OG2=OM2+42 ,
∴r2=(r﹣2)2+16,
解得:r=5,
答:小橋所在圓的半徑為5m.
【解析】根據(jù)已知得出旗桿高度,進(jìn)而得出GM=MH,再利用勾股定理求出半徑即可.
【考點(diǎn)精析】本題主要考查了勾股定理的概念和垂徑定理的推論的相關(guān)知識點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;推論1:A、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧B、弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧C、平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧;推論2 :圓的兩條平行弦所夾的弧相等才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+2ax﹣3a(a>0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求拋物線的對稱軸及線段AB的長;
(2)拋物線的頂點(diǎn)為P,若∠APB=120°,求頂點(diǎn)P的坐標(biāo)及a的值;
(3)若在拋物線上存在一點(diǎn)N,使得∠ANB=90°,結(jié)合圖象,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+5與雙曲線y= (x>0)相交于A,B兩點(diǎn),與x軸相交于C點(diǎn),△BOC的面積是 .若將直線y=﹣x+5向下平移1個單位,則所得直線與雙曲線y= (x>0)的交點(diǎn)有(
A.0個
B.1個
C.2個
D.0個,或1個,或2個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知l1∥l2∥l3 , 相鄰兩條平行直線間的距離相等,若等腰直角△ABC的三個頂點(diǎn)分別在這三條平行直線上,則sinα的值是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線AB過點(diǎn)A(m,0),B(0,n),且m+n=20(其中m>0,n>0).

(1)m為何值時,△OAB面積最大?最大值是多少?
(2)如圖2,在(1)的條件下,函數(shù) 的圖象與直線AB相交于C、D兩點(diǎn),若 ,求k的值.
(3)在(2)的條件下,將△OCD以每秒1個單位的速度沿x軸的正方向平移,如圖3,設(shè)它與△OAB的重疊部分面積為S,請求出S與運(yùn)動時間t(秒)的函數(shù)關(guān)系式(0<t<10).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某校舉行的“中國學(xué)生營養(yǎng)日”活動中,設(shè)計(jì)了抽獎環(huán)節(jié):在一只不透明的箱子中有3個球,其中2個紅球,1個白球,它們除顏色外均相同.
(1)隨機(jī)摸出一個球,恰好是紅球就能中獎,則中獎的概率是多少?
(2)同時摸出兩個球,都是紅球 就能中特別獎,則中特別獎的概率是多少?(要求畫樹狀圖或列表求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某校舉行的“中國學(xué)生營養(yǎng)日”活動中,設(shè)計(jì)了抽獎環(huán)節(jié):在一只不透明的箱子中有3個球,其中2個紅球,1個白球,它們除顏色外均相同.
(1)隨機(jī)摸出一個球,恰好是紅球就能中獎,則中獎的概率是多少?
(2)同時摸出兩個球,都是紅球 就能中特別獎,則中特別獎的概率是多少?(要求畫樹狀圖或列表求解)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,E、F分別為BC、CD的中點(diǎn),連接AE、BF,交點(diǎn)為G.

(1)求證:AE⊥BF;
(2)將△BCF沿BF對折,得到△BPF(如圖2),延長FP到BA的延長線于點(diǎn)Q,求sin∠BQP的值;

(3)將△ABE繞點(diǎn)A逆時針方向旋轉(zhuǎn),使邊AB正好落在AE上,得到△AHM(如圖3),若AM和BF相交于點(diǎn)N,當(dāng)正方形ABCD的面積為4時,求四邊形GHMN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,對角線AC,BD相交于點(diǎn)O,添加下列條件不能判定ABCD是菱形的只有(
A.AC⊥BD
B.AB=BC
C.AC=BD
D.∠1=∠2

查看答案和解析>>

同步練習(xí)冊答案