作业宝如圖,已知△ABC.
(1)請用尺規(guī)作圖法作出BC的垂直平分線DE,垂足為D,交AC于點E(保留作圖痕跡,不寫作法);
(2)請用尺規(guī)作圖法作出∠C的角平分線CF,交AB于點F(保留作圖痕跡,不寫作法);
(3)請用尺規(guī)作圖法在BC上找出一點P,使△PEF的周長最小(保留作圖痕跡,不寫作法).

解:(1)如圖所示:DE即為所求;
(2)如圖所示:CF即為所求;
(3)如圖所示:P點即為所求.
分析:(1)利用線段垂直平分線的作法得出BC的垂直平分線即可;
(2)利用角平分線的作法得出即可;
(3)由于△PEF的周長=PF+PE+EF,而MN是定值,故只需在BC上找一點P,使PF+PE最小,作出F關于BC的對稱點為F′,連接EF′得出即可.
點評:本題考查了角平分線的作法以及線段垂直垂直分線的作法以及軸對稱中最短路線問題,解這類問題的關鍵是把兩條線段的和轉(zhuǎn)化為一條線段,運用三角形三邊關系解決.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC的三個頂點分別為A(2,3)、B(3,1)、C(-2,-2).
(1)請在圖中作出△ABC關于直線x=-1的軸對稱圖形△DEF(A、B、C的對應點分別是D、E、F),并直接寫出D、E、F的坐標;
(2)求四邊形ABED的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、如圖,已知△ABC和△CDE均為等邊三角形,且點B、C、D在同一條直線上,連接AD、BE,交CE和AC分別于G、H點,連接GH.
(1)請說出AD=BE的理由;
(2)試說出△BCH≌△ACG的理由;
(3)試猜想:△CGH是什么特殊的三角形,并加以說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC,∠ACB=90°,AC=BC,點E、F在AB上,∠ECF=45°.
(1)求證:△ACF∽△BEC;
(2)設△ABC的面積為S,求證:AF•BE=2S;
(3)試判斷以線段AE、EF、FB為邊的三角形的形狀并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、(1)已知線段a,h,用直尺和圓規(guī)作等腰三角形ABC,底邊BC=a,BC邊上的高為h(要求尺規(guī)作圖,不寫作法和證明)
(2)如圖,已知△ABC,請作出△ABC關于X軸對稱的圖形.并寫出A、B、C關于X軸對稱的點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、如圖,已知△ABC是銳角三角形,且∠A=50°,高BE、CF相交于點O,求∠BOC的度數(shù).

查看答案和解析>>

同步練習冊答案