【題目】“今天你光盤了嗎?”這是國(guó)家倡導(dǎo)“厲行節(jié)約,反對(duì)浪費(fèi)”以來(lái)的時(shí)尚流行語(yǔ).某校團(tuán)委隨機(jī)抽取了部分學(xué)生,對(duì)他們進(jìn)行了關(guān)于“光盤行動(dòng)”所持態(tài)度的調(diào)查,并根據(jù)調(diào)查收集的數(shù)據(jù)繪制了如下兩幅不完整的統(tǒng)計(jì)圖:
根據(jù)上述信息,解答下列問(wèn)題:
(1)抽取的學(xué)生人數(shù)為;
(2)將兩幅統(tǒng)計(jì)圖補(bǔ)充完整;
(3)請(qǐng)你估計(jì)該校1200名學(xué)生中對(duì)“光盤行動(dòng)”持贊成態(tài)度的人數(shù).

【答案】
(1)200
(2)解:根據(jù)題意得:

無(wú)所謂的人數(shù)是:200×30%=60(人),

反對(duì)的人數(shù)是:200×10%=20(人),

補(bǔ)圖如下:


(3)解:根據(jù)題意得:

1200×60%=720(人),

答:該校1200名學(xué)生中對(duì)“光盤行動(dòng)”持贊成態(tài)度的人數(shù)有720人


【解析】解:(1)贊成的所占的百分比是1﹣30%﹣10%=60%, 抽取的學(xué)生人數(shù)為:120÷60%=200(人);故答案為:200.
(1)根據(jù)扇形統(tǒng)計(jì)圖所給的數(shù)據(jù),求出贊成的所占的百分比,再根據(jù)贊成的人數(shù),即可求出總?cè)藬?shù);(2)根據(jù)總?cè)藬?shù)和所占的百分比,即可補(bǔ)全統(tǒng)計(jì)圖;(3)用贊成所占的百分比乘以總?cè)藬?shù),即可得出該校1200名學(xué)生中對(duì)“光盤行動(dòng)”持贊成態(tài)度的人數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程或方程組解應(yīng)用題:
為祝賀北京成功獲得2022年冬奧會(huì)主辦權(quán),某工藝品廠準(zhǔn)備生產(chǎn)紀(jì)念北京申辦冬奧會(huì)成功的“紀(jì)念章”和“冬奧印”.生產(chǎn)一枚“紀(jì)念章”需要用甲種原料4盒,乙種原料3盒;生產(chǎn)一枚“冬奧印”需要用甲種原料5 盒,乙種原料10 盒.該廠購(gòu)進(jìn)甲、乙兩種原料分別為20000盒和30000盒,如果將所購(gòu)進(jìn)原料正好全部都用完,那么能生產(chǎn)“紀(jì)念章”和“冬奧印”各多少枚?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】研究幾何圖形,我們往往先給出這類圖形的定義,再研究它的性質(zhì)和判定方法.我們給出如下定義:如圖,四邊形ABCD中,AB=AD,CB=CD像這樣兩組鄰邊分別相等的四邊形叫做“箏形”;

(1)小文認(rèn)為菱形是特殊的“箏形”,你認(rèn)為他的判斷正確嗎?
(2)小文根據(jù)學(xué)習(xí)幾何圖形的經(jīng)驗(yàn),通過(guò)觀察、實(shí)驗(yàn)、歸納、類比、猜想、證明等方法,對(duì)AB≠BC的“箏形”的性質(zhì)和判定方法進(jìn)行了探究.下面是小文探究的過(guò)程,請(qǐng)補(bǔ)充完成:
①他首先發(fā)現(xiàn)了這類“箏形”有一組對(duì)角相等,并進(jìn)行了證明,請(qǐng)你完成小文的證明過(guò)程.
已知:如圖,在”箏形”ABCD中,AB=AD,CB=CD.
求證:∠ABC=∠ADC.
證明:②小文由①得到了這類“箏形”角的性質(zhì),他進(jìn)一步探究發(fā)現(xiàn)這類“箏形”還具有其它性質(zhì),請(qǐng)?jiān)賹懗鲞@類“箏形”的一條性質(zhì)(除“箏形”的定義外);
③繼性質(zhì)探究后,小文探究了這類“箏形”的判定方法,寫出這類“箏形”的一條判定方法(除“箏形”的定義外):

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊△ABC中,點(diǎn)D是 AB邊上一點(diǎn),連接CD,將線段CD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°后得到CE,連接AE.求證:AE∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在菱形ABCD中,∠BAD=α,E為對(duì)角線AC上的一點(diǎn)(不與A,C重合),將射線EB繞點(diǎn)E順時(shí)針旋轉(zhuǎn)β角之后,所得射線與直線AD交于F點(diǎn).試探究線段EB與EF的數(shù)量關(guān)系.小宇發(fā)現(xiàn)點(diǎn)E的位置,α和β的大小都不確定,于是他從特殊情況開(kāi)始進(jìn)行探究.

(1)如圖1,當(dāng)α=β=90°時(shí),菱形ABCD是正方形.小宇發(fā)現(xiàn),在正方形中,AC平分∠BAD,作EM⊥AD于M,EN⊥AB于N.由角平分線的性質(zhì)可知EM=EN,進(jìn)而可得△EMF≌△ENB,并由全等三角形的性質(zhì)得到EB與EF的數(shù)量關(guān)系為
(2)如圖2,當(dāng)α=60°,β=120°時(shí),
①依題意補(bǔ)全圖形;
②請(qǐng)幫小宇繼續(xù)探究(1)的結(jié)論是否成立.若成立,請(qǐng)給出證明;若不成立,
請(qǐng)舉出反例說(shuō)明;
(3)小宇在利用特殊圖形得到了一些結(jié)論之后,在此基礎(chǔ)上對(duì)一般的圖形進(jìn)行了探究,設(shè)∠ABE=γ,若旋轉(zhuǎn)后所得的線段EF與EB的數(shù)量關(guān)系滿足(1)中的結(jié)論,請(qǐng)直接寫出角α,β,γ滿足的關(guān)系:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,對(duì)角線AC , BD相交于點(diǎn)O , 且AC=6cm,BD=8cm,動(dòng)點(diǎn)P , Q分別從點(diǎn)B , D同時(shí)出發(fā),運(yùn)動(dòng)速度均為1cm/s,點(diǎn)P沿BCD運(yùn)動(dòng),到點(diǎn)D停止,點(diǎn)Q沿DOB運(yùn)動(dòng),到點(diǎn)O停止1s后繼續(xù)運(yùn)動(dòng),到點(diǎn)B停止,連接AP , AQ , PQ . 設(shè)△APQ的面積為y(cm2)(這里規(guī)定:線段是面積0的幾何圖形),點(diǎn)P的運(yùn)動(dòng)時(shí)間為x(s).
(1)填空:AB=cm,ABCD之間的距離為cm;
(2)當(dāng)4≤x≤10時(shí),求yx之間的函數(shù)解析式;
(3)直接寫出在整個(gè)運(yùn)動(dòng)過(guò)程中,使PQ與菱形ABCD一邊平行的所有x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表給出了代數(shù)式x2+bx+c與x的一些對(duì)應(yīng)值:

x

0

1

2

3

4

x2+bx+c

3

﹣1

3


(1)請(qǐng)?jiān)诒韮?nèi)的空格中填入適當(dāng)?shù)臄?shù);
(2)設(shè)y=x2+bx+c,則當(dāng)x取何值時(shí),y>0;
(3)請(qǐng)說(shuō)明經(jīng)過(guò)怎樣平移函數(shù)y=x2+bx+c的圖象得到函數(shù)y=x2的圖象?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,過(guò)點(diǎn)A(﹣2,0)的直線交y軸正半軸于點(diǎn)B,將直線AB繞著點(diǎn)順時(shí)針旋轉(zhuǎn)90°后,分別與x軸、y軸交于點(diǎn)D、C.

(1)若OB=4,求直線AB的函數(shù)關(guān)系式;
(2)連接BD,若△ABD的面積是5,求點(diǎn)B的運(yùn)動(dòng)路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】光伏發(fā)電惠民生,據(jù)衢州晚報(bào)載,某家庭投資4萬(wàn)元資金建造屋頂光伏發(fā)電站,遇到晴天平均每天可發(fā)電30度,其它天氣平均每天可發(fā)電5度,已知某月(按30天計(jì))共發(fā)電550度.

(1)求這個(gè)月晴天的天數(shù).
(2)已知該家庭每月平均用電量為150度,若按每月發(fā)電550度計(jì),至少需要幾年才能收回成本(不計(jì)其它費(fèi)用,結(jié)果取整數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案