【題目】如圖,拋物線y=﹣x2+bx+c過點B(3,0),C(0,3),D為拋物線的頂點.
(1)求拋物線的解析式以及頂點坐標;
(2)點C關于拋物線y=﹣x2+bx+c對稱軸的對稱點為E點,聯(lián)結BC,BE,求∠CBE的正切值;
(3)點M是拋物線對稱軸上一點,且△DMB和△BCE相似,求點M坐標.
【答案】
(1)
解:∵拋物線y=﹣x2+bx+c經(jīng)過點B(3,0)和點C(0,3)
∴ ,
解得 ,
∴拋物線解析式為y=﹣x2+2x+3,
y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴拋物線頂點D的坐標為(1,4)
(2)
解:由(1)可知拋物線對稱軸為直線x=1,
∵點E與點C(0,3)關于直線x=1對稱,
∴點E(2,3),
過點E作EH⊥BC于點H,
∵OC=OB=3,
∴BC= ,
∵ ,CE=2,
∴ ,
解得EH= ,
∵∠ECH=∠CBO=45°,
∴CH=EH= ,
∴BH=2 ,
∴在Rt△BEH中,
(3)
解:當點M在點D的下方時
設M(1,m),對稱軸交x軸于點P,則P(1,0),
∴BP=2,DP=4,
∴ ,
∵ ,∠CBE、∠BDP均為銳角,
∴∠CBE=∠BDP,
∵△DMB與△BEC相似,
∴ 或 ,
① ,
∵DM=4﹣m, , ,
∴ ,
解得, ,
∴點M(1, )
② ,則 ,
解得m=﹣2,
∴點M(1,﹣2),
當點M在點D的上方時,根據(jù)題意知點M不存在.
綜上所述,點M的坐標為(1, )或(1,﹣2).
【解析】(1)利用待定系數(shù)法求出二次函數(shù)的解析式,根據(jù)二次函數(shù)的性質(zhì)解答即可;(2)過點E作EH⊥BC于點H,根據(jù)軸對稱的性質(zhì)求出點E的坐標,根據(jù)三角形的面積公式求出EH、BH,根據(jù)正切的定義計算即可;(3)分 和 兩種情況,計算即可.
【考點精析】解答此題的關鍵在于理解二次函數(shù)的概念的相關知識,掌握一般地,自變量x和因變量y之間存在如下關系:一般式:y=ax2+bx+c(a≠0,a、b、c為常數(shù)),則稱y為x的二次函數(shù),以及對二次函數(shù)的圖象的理解,了解二次函數(shù)圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,E為BC邊中點,連接AE,以AD為直徑的⊙O交AE于點F,連接CF.
(1)求證:CF與⊙O相切;
(2)若AD=2,F(xiàn)為AE的中點,求AB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C1:ρ2﹣4ρcosθ+3=0,θ∈[0,2π],曲線C2:ρ= ,θ∈[0,2π]. (Ⅰ)求曲線C1的一個參數(shù)方程;
(Ⅱ)若曲線C1和曲線C2相交于A、B兩點,求|AB|的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一條拋物線y=﹣x(x﹣2)(0≤x≤2)的一部分,記為C1 , 它與x軸交于O,A1兩點,將C1繞點A1旋轉(zhuǎn)180°得到C2 , 交x軸于點A2 , ;將C2繞點A2旋轉(zhuǎn)180°得到C3 , 交x軸于A3;…如此進行下去,直至得到C6 , 若點P(2017,y)在拋物線Cn上,則y= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在△ABC中,cosA= ,BE,CF分別是AC,AB邊上的高,聯(lián)結EF,那么△AEF和△ABC的周長比為( )
A.1:2
B.1:3
C.1:4
D.1:9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,將△ABC繞點A順時針旋轉(zhuǎn),使點C落在邊AB上的點E處,點B落在點D處,連接BD,如果∠DAC=∠DBA,那么 的值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,DE∥BC,且過△ABC的重心,分別與AB,AC交于點D,E,點P是線段DE上一點,CP的延長線交AB于點Q,如果 = ,那么S△DPQ:S△CPE的值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,第一象限內(nèi)的點A,B在反比例函數(shù)的圖象上,點C在y軸上,BC∥x軸,點A的坐標為(2,4),且cot∠ACB=
求:
(1)反比例函數(shù)的解析式;
(2)點C的坐標;
(3)∠ABC的余弦值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,E是BC的中點,連接AE并延長交DC的延長線于點F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com