【題目】已知拋物線y=﹣+bx+c與y軸交于點(diǎn)C,與x軸的兩個(gè)交點(diǎn)分別為A(﹣4,0),B(1,0).
(1)求拋物線的解析式;
(2)已知點(diǎn)P在拋物線上,連接PC,PB,若△PBC是以BC為直角邊的直角三角形,求點(diǎn)P的坐標(biāo);
(3)已知點(diǎn)E在x軸上,點(diǎn)F在拋物線上,是否存在以A,C,E,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)拋物線的解析式為y=﹣;(2)存在,滿足條件的P點(diǎn)坐標(biāo)為(﹣4,0),P2(﹣5,﹣3);(3)滿足條件的點(diǎn)E為(﹣7,0)或(﹣1,0)或(,0)或(,0).
【解析】試題分析:(1)因?yàn)閽佄锞經(jīng)過點(diǎn)A(﹣4,0),B(1,0),所以可以設(shè)拋物線為y=﹣(x+4)(x﹣1),展開即可解決問題;
(2)先證明∠ACB=90°,點(diǎn)A就是所求的點(diǎn)P,求出直線AC解析式,再求出過點(diǎn)B平行AC的直線的解析式,利用方程組即可解決問題;
(3)分AC為平行四邊形的邊,AC為平行四邊形的對(duì)角線討論即可解決問題.
試題解析:解:(1)拋物線的解析式為y=﹣(x+4)(x﹣1),即;
(2)存在.當(dāng)x=0, =2,則C(0,2),∴OC=2,∵A(﹣4,0),B(1,0),∴OA=4,OB=1,AB=5,當(dāng)∠PCB=90°時(shí),∵AC2=42+22=20,BC2=22+12=5,AB2=52=25
∴AC2+BC2=AB2,∴△ACB是直角三角形,∠ACB=90°,∴當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),△PBC是以BC為直角邊的直角三角形,此時(shí)P點(diǎn)坐標(biāo)為(﹣4,0);
當(dāng)∠PBC=90°時(shí),PB∥AC,如圖1,設(shè)直線AC的解析式為y=mx+n,把A(﹣4,0),C(0,2)代入得: ,解得: ,∴直線AC的解析式為y=x+2,∵BP∥AC,∴直線BP的解析式為y=x+p,把B(1,0)代入得+p=0,解得p=﹣,∴直線BP的解析式為y=x﹣,解方程組: 得: 或,此時(shí)P點(diǎn)坐標(biāo)為(﹣5,﹣3);
綜上所述,滿足條件的P點(diǎn)坐標(biāo)為(﹣4,0),P2(﹣5,﹣3);
(3)存在點(diǎn)E,設(shè)點(diǎn)E坐標(biāo)為(m,0),F(n, ),分三種情況討論:
①當(dāng)AC為邊,CF1∥AE1,易知CF1=3,此時(shí)E1坐標(biāo)(﹣7,0);
②當(dāng)AC為邊時(shí),AC∥EF,易知點(diǎn)F縱坐標(biāo)為﹣2,∴ =﹣2,解得n= ,得到F2(,﹣2),F3(,﹣2),根據(jù)中點(diǎn)坐標(biāo)公式得到: = 或 =,解得m=或,此時(shí)E2(,0),E3(,0);
③當(dāng)AC為對(duì)角線時(shí),AE4=CF1=3,此時(shí)E4(﹣1,0).
綜上所述滿足條件的點(diǎn)E為(﹣7,0)或(﹣1,0)或(,0)或(,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,在△ABC中,AB=AC,D為BC上一點(diǎn),∠B=30°,連接AD.
(1)若∠BAD=45°,求證:△ACD為等腰三角形;
(2)若△ACD為直角三角形,求∠BAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,BC=2.將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)α角后得到△A′B′C,當(dāng)點(diǎn)A的對(duì)應(yīng)點(diǎn)A'落在AB邊上時(shí),旋轉(zhuǎn)角α的度數(shù)是_____度,陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防疾病,某單位對(duì)辦公室采用藥熏消毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如圖),現(xiàn)測(cè)得藥物8分鐘燃畢,此時(shí)室內(nèi)空氣中每立方米的含藥量6毫克,請(qǐng)根據(jù)題中所提供的信息,解答下列問題:
(1)藥物燃燒時(shí),y關(guān)于x的函數(shù)關(guān)系式為________,自變量x的取值范為________;藥物燃燒后,y關(guān)于x的函數(shù)關(guān)系式為________.
(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6毫克時(shí)員工方可進(jìn)辦公室,那么從消毒開始,至少需要經(jīng)過________分鐘后,員工才能回到辦公室;
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時(shí)間不低于10分鐘時(shí),才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB是⊙O的直徑,AC與⊙O交于點(diǎn)D,點(diǎn)E在上,連接DE,AE,連接CE并延長(zhǎng)交AB于點(diǎn)F,∠AED=∠ACF.
(1)求證:CF⊥AB;
(2)若CD=4,CB=4,cos∠ACF=,求EF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,正方形ABCD和正方形DEFG,G在AD邊上,E在CD的延長(zhǎng)線上.求證:AE=CG,AE⊥CG;
(2)如圖2,若將圖1中的正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)角度θ(0°<θ<90°),此時(shí)AE=CG還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由;
(3)如圖3,當(dāng)正方形DEFG繞點(diǎn)D順時(shí)針旋轉(zhuǎn)45°時(shí),延長(zhǎng)CG交AE于點(diǎn)H,當(dāng)AD=4,DG=時(shí),求線段CH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,
(1)問直線EF與AB有怎樣的位置關(guān)系?加以證明;
(2)若∠CEF=70°,求∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為了了解七年學(xué)生跳繩情況,從七年級(jí)學(xué)生中隨機(jī)抽查了50名學(xué)生進(jìn)行1分鐘跳繩測(cè)試,并對(duì)測(cè)試結(jié)果統(tǒng)計(jì)后繪制了如下不完整統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖表中的信息解答下列問題.
組別 | 次數(shù) | 頻數(shù)(人) | 百分比 |
1 | 60≤x<90 | 5 | 10% |
2 | 90≤x<120 | 5 | b |
3 | 120≤x<150 | 18 | 36% |
4 | 150≤x<180 | a | c |
5 | 180≤x<210 | 2 | 4% |
合計(jì) | 50 | 1 |
(1)直接寫出a= ,b= ,c= ;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)若該校七年級(jí)共有學(xué)生400人,請(qǐng)你估計(jì)該校七年級(jí)學(xué)生跳繩次數(shù)在90≤x<150范圍的學(xué)生約有多少人?(
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com