【題目】如圖,等邊△ABC的周長是12,DAC邊上的中點,點EBC邊的延長線上,如果DE=DB,那么CE的長是_______.

【答案】2

【解析】

由△ABC為等邊三角形,且BD為邊AC的中線,根據(jù)三線合一得到BD平分∠ABC,而∠ABC60°,得到∠DBE30°,又因為DE=DB,根據(jù)等邊對等角得到∠E與∠DBE相等,故∠E也為30°;

由等邊三角形的三邊相等且周長為9,求出AC的長為3,且∠ACB60°,根據(jù)∠ACB為△DCE的外角,根據(jù)三角形的外角等于與它不相鄰的兩個內(nèi)角之和,求出∠CDE也為30°,根據(jù)等角對等邊得到CD=CE,都等于邊長AC的一半,從而求出CE的值.

∵△ABC為等邊三角形,DAC邊上的中點,

BD為∠ABC的平分線,且∠ABC=60°,

即∠DBE=30°,又DE=DB,

∴∠E=DBE=30°

∵等邊△ABC的周長為9,

AC=3,且∠ACB=60°

∴∠CDE=ACBE=30°,即∠CDE=E,

CD=CE=AC=2.

故答案為:2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD為∠BAC的平分線,添下列條件后,不能證明△ABD≌△ACD的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】生活與數(shù)學

1)瑩瑩在日歷上圈出三個數(shù),呈大寫的“一”字,這三個數(shù)的和是中間數(shù)的   倍,瑩瑩又在日歷上圈出5個數(shù),呈“十”字框形,它們的和是50,則中間的數(shù)是   

2)小麗同學也在某月的日歷上圈出如圖所示“七”字形,發(fā)現(xiàn)這八個數(shù)的和是125,那么這八個數(shù)中最大數(shù)為   

3)在第(2)題中這八個數(shù)之和   101(填“能”或“不能”).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點,C,交y軸于點B,交x軸于點D,那么不等式的解集是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:,OE平分,點A、B、C分別是射線OM、OE、ON上的動點、B、C不與點O重合,連接AC交射線OE于點

如圖1,若,則

的度數(shù)是______;

時,______;當時,______.

如圖2,若,則是否存在這樣的x的值,使得中有兩個相等的角?若存在,求出x的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(一)閱讀

x+6x+11的最小值.

解:x+6x+11

=x2+6x+9+2

=x+32+2

由于(x+32的值必定為非負數(shù),所以(x+32+2,即x2+6x+11的最小值為2

(二)解決問題

1)若m2+2mn+2n2-6n+9=0,求(-3的值;

2)對于多項式x2+y-2x+2y+5,當xy取何值時有最小值,最小值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點E,F分別在AD,BC上,將紙片ABCD沿直線EF折疊,點C落在AD上的一點H處,點D落在點G處,有以下四個結論:HE=HF;EC平分DCH;線段BF的取值范圍為3≤BF≤4;當點H與點A重合時,EF=2.以上結論中,你認為正確的有(  )個.

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)y=-的圖象的兩個分支分布在第_________象限,在每個象限內(nèi),yx的增大而_________,函數(shù)y=的圖象的兩個分支分布在第_________象限,在每一個象限內(nèi),yx的減小而_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】鎮(zhèn)江市旅游局為了亮化某景點,在兩條筆直且互相平行的景觀道MN、QP上分別放置AB兩盞激光燈,如圖所示.A燈發(fā)出的光束自AM逆時針旋轉至AN便立即回轉;B燈發(fā)出的光束自BP逆時針旋轉至BQ便立即回轉,兩燈不間斷照射,A燈每秒轉動12°,B燈每秒轉動4°.B燈先轉動12秒,A燈才開始轉動.當B燈光束第一次到達BQ之前,兩燈的光束互相平行時A燈旋轉的時間是   

查看答案和解析>>

同步練習冊答案