【題目】如圖,在△ABC中,BD、BE分別是△ABC的高線和角平分線,點(diǎn)F在CA的延長線上,F(xiàn)H⊥BE交BD于點(diǎn)G,交BC于點(diǎn)H.下列結(jié)論:①∠DBE=∠F;②∠BEF=(∠BAF+∠C); ③∠FGD=∠ABE+∠C;④∠F=(∠BAC﹣∠C);其中正確的是_____

【答案】①②③④

【解析】

①根據(jù)BD⊥FD,F(xiàn)H⊥BE和∠FGD=∠BGH,證明結(jié)論正確;

②根據(jù)角平分線的定義和三角形外角的性質(zhì)證明結(jié)論正確;

根據(jù)垂直的定義和同角的余角相等的性質(zhì)證明結(jié)論正確;

證明∠DBE=∠BAC-∠C,根據(jù)①的結(jié)論,證明結(jié)論正確.

解:①∵BD⊥FD,

∴∠FGD+∠F=90°,

∵FH⊥BE,

∴∠BGH+∠DBE=90°,

∵∠FGD=∠BGH,

∴∠DBE=∠F,

故①正確;

②∵BE平分∠ABC,

∴∠ABE=∠CBE,

∠BEF=∠CBE+∠C,

∴2∠BEF=∠ABC+2∠C,

∠BAF=∠ABC+∠C,

∴2∠BEF=∠BAF+∠C,

∠BEF=(∠BAF+∠C),

故②正確;

③∵∠AEB=∠EBC+∠C,

∵∠ABE=∠EBC,

∴∠AEB=∠ABE+∠C,

∵BD⊥FC,F(xiàn)H⊥BE,

FGD=90-DFH,AEB=90-DFH,

∴∠FGD=∠AEB

FGD=∠ABE+∠C.

故③正確;

④∠ABD=90°-∠BAC,

∠DBE=∠ABE-∠ABD=∠ABE-90°+∠BAC=∠CBD-∠DBE-90°+∠BAC,

∵∠CBD=90°-∠C,

∴∠DBE=∠BAC-∠C-∠DBE,

由①得,∠DBE=∠F,

∴∠F=∠BAC-∠C-∠DBE,

∴∠F=(∠BAC-∠C);

故④正確,

故答案為:①②③④.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】取一副三角板按圖1拼接,固定三角板ADC,將三角板ABC繞點(diǎn)A依順時針方向旋轉(zhuǎn)一個大小為α的角 (0°<α≤45°)得到△ABC′,如圖所示.試問:

(1)當(dāng)α為多少度時,能使得圖2中ABDC

(2)連接BD,當(dāng)0°<α≤45°時,探尋∠DBC′+∠CAC′+∠BDC值的大小變化情況,并給出你的證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,∠CAB=70°,將△ABC繞點(diǎn)A按逆時針方向旋轉(zhuǎn)到△AB′C′的位置,使得CC′∥AB,則∠BAB′的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,直徑AB與弦CD相交于點(diǎn)P,∠CAB=40°,∠APD=65°.
(1)求∠B的大小;
(2)已知圓心0到BD的距離為3,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),長方形OACB的頂點(diǎn)A、B分別在x軸與y軸上,已知OA=6,OB=10.點(diǎn)Dy軸上一點(diǎn),其坐標(biāo)為(0,2),點(diǎn)P從點(diǎn)A出發(fā)以每秒2個單位的速度沿線段AC﹣CB的方向運(yùn)動,當(dāng)點(diǎn)P與點(diǎn)B重合時停止運(yùn)動,運(yùn)動時間為t秒.

(1)當(dāng)點(diǎn)P經(jīng)過點(diǎn)C時,求直線DP的函數(shù)解析式;

(2)①求△OPD的面積S關(guān)于t的函數(shù)解析式;

②如圖②,把長方形沿著OP折疊,點(diǎn)B的對應(yīng)點(diǎn)B′恰好落在AC邊上,求點(diǎn)P的坐標(biāo).

(3)點(diǎn)P在運(yùn)動過程中是否存在使△BDP為等腰三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AD⊥BC,AE平分∠BAC交BC于點(diǎn)E.

(1)若∠B=20°,∠C=80°,求∠EAC和∠EAD的大。

(2)若∠C>∠B,由(1)的計算結(jié)果,你能發(fā)現(xiàn)∠EAD與∠C﹣∠B的數(shù)量關(guān)系嗎?寫出這個關(guān)系式,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)O是邊長為2的正方形ABCD的中心.
(1)若函數(shù)y=x2+m的圖象過點(diǎn)C,求這個函數(shù)的解析式;并判斷其函數(shù)圖象是否過A點(diǎn).
(2)若將(1)中的函數(shù)圖象先向右平移1個單位,再向上平移2個單位,直接寫出平移后函數(shù)的解析式和頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點(diǎn)E,使CE=2,連接DE,動點(diǎn)P從點(diǎn)B出發(fā),以每秒2個單位的速度沿BC﹣CD﹣DA向終點(diǎn)A運(yùn)動,設(shè)點(diǎn)P的運(yùn)動時間為t秒,當(dāng)t的值為_____秒時,ABPDCE全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=30°,以直角頂點(diǎn)A為圓心,AB長為半徑畫弧交BC于點(diǎn)D,過D作DE⊥AC于點(diǎn)E.若DE=a,則△ABC的周長用含a的代數(shù)式表示為

查看答案和解析>>

同步練習(xí)冊答案