【題目】如圖所示,以的斜邊為邊,在的同側(cè)作正方形,,交于點(diǎn),連接.若,,則________.
【答案】
【解析】
在AC上截取CG=AB=4,連接OG,根據(jù)三角形內(nèi)角和定理推出∠ABO=∠ACO,進(jìn)而證出△BAO≌△CGO,推出OA=OG=,∠AOB=∠COG,得出△AOG是等腰直角三角形,再結(jié)合勾股定理計(jì)算即可得出答案.
在AC上截取CG=AB=4,連接OG
∵四邊形BCEF是正方形,∠BAC=90°
∴OB=OC,∠BAC=∠BOC=90°
∴∠ABO=∠ACO
∵BA=CG,∠ABO=∠ACO,OB=OC
∴△BAO≌△CGO
∴OA=OG=,∠AOB=∠COG
∵∠BOC=∠COG+∠BOG=90°
∴∠AOG=∠AOB+∠BOG=90°,即△AOG是等腰直角三角形
∴,
∴AC=AG+CG=12,
∴,
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y1=x+b的圖象l與二次函數(shù)y2=﹣x2+mx+b的圖象C′都經(jīng)過(guò)點(diǎn)B(0,1)和點(diǎn)C,且圖象C′過(guò)點(diǎn)A(2﹣,0).
(1)求二次函數(shù)的最大值;
(2)設(shè)使y2>y1成立的x取值的所有整數(shù)和為s,若s是關(guān)于x的方程=0的根,求a的值;
(3)若點(diǎn)F、G在圖象C′上,長(zhǎng)度為的線段DE在線段BC上移動(dòng),EF與DG始終平行于y軸,當(dāng)四邊形DEFG的面積最大時(shí),在x軸上求點(diǎn)P,使PD+PE最小,求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】萬(wàn)州某企業(yè)捐資購(gòu)買了一批重120噸的物資支援某貧困鄉(xiāng)鎮(zhèn),現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運(yùn)載能力和運(yùn)費(fèi)如下(假設(shè)每輛車均滿載):甲載重5噸,運(yùn)費(fèi)400元/車,乙載重8噸,運(yùn)費(fèi)500元/車,丙載重10噸,運(yùn)費(fèi)600元/車,該公司計(jì)劃用甲、乙、丙三種車型同時(shí)參與運(yùn)送并完成任務(wù),已知它們的總輛數(shù)為15輛,要使費(fèi)用最省,所使用的甲、乙、丙三種車型的輛數(shù)分別是______。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷售一批小家電,平均每天可售出20臺(tái),每臺(tái)盈利40元.為了去庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.經(jīng)調(diào)查發(fā)現(xiàn),在一定范圍內(nèi),小家電的單價(jià)每降5元,商場(chǎng)平均每天可多售出10臺(tái).
(1)若將這批小家電的單價(jià)降低x元,則每天的銷售量是______臺(tái)(用含x的代數(shù)式表示);
(2)如果商場(chǎng)通過(guò)銷售這批小家電每天要盈利1250元,那么單價(jià)應(yīng)降多少元?
(3)若這批小家電的單價(jià)有三種降價(jià)方式:降價(jià)10元、降價(jià)20元、降價(jià)30元,如果你是商場(chǎng)經(jīng)理,你準(zhǔn)備采取哪種降價(jià)方式?說(shuō)說(shuō)理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】統(tǒng)計(jì)七年級(jí)部分同學(xué)的跳高測(cè)試成績(jī),得到如下頻率直方圖(每組含前一個(gè)邊界值,不含后一個(gè)邊界值).
(1)參加測(cè)試的總?cè)藬?shù)是多少人?
(2)組距為多少?
(3)跳高成績(jī)?cè)?/span>(含)以上的有多少人?占總?cè)藬?shù)的百分之幾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“中華人民共和國(guó)道路交通管理?xiàng)l例”規(guī)定:小汽車在城街路上行駛速度不得超過(guò)70千米小時(shí),如圖,一輛小汽車在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路面對(duì)車速檢測(cè)儀A的正前方60米處的C點(diǎn),過(guò)了5秒后,測(cè)得小汽車所在的B點(diǎn)與車速檢測(cè)儀A之間的距離為100米.
求BC間的距離;這輛小汽車超速了嗎?請(qǐng)說(shuō)明理由.
【答案】這輛小汽車沒(méi)有超速.
【解析】
(1)根據(jù)勾股定理求出BC的長(zhǎng);
(2)直接求出小汽車的時(shí)速,進(jìn)行比較得出答案.
(1)在Rt△ABC中,AC=60 m,
AB=100 m,且AB為斜邊,根據(jù)勾股定理,得BC=80 m.
(2)這輛小汽車沒(méi)有超速.
理由:∵80÷5=16(m/s),
而16 m/s=57.6 km/h,57.6<70,
∴這輛小汽車沒(méi)有超速.
【點(diǎn)睛】
考查勾股定理的應(yīng)用,熟練掌握勾股定理是解題的關(guān)鍵.
【題型】解答題
【結(jié)束】
19
【題目】已知:如圖,線段AC和BD相交于點(diǎn)G,連接AB,CD,E是CD上一點(diǎn),F是DG上一點(diǎn),,且.
求證:;若,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料:基本不等式≤(a>0,b>0),當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立.其中我們把叫做正數(shù)a、b的算術(shù)平均數(shù),叫做正數(shù)a、b的幾何平均數(shù),它是解決最大(。┲祮(wèn)題的有力工具.
例如:在x>0的條件下,當(dāng)x為何值時(shí),x+有最小值,最小值是多少?
解:∵x>0,>0∴≥即是x+≥2
∴x+≥2
當(dāng)且僅當(dāng)x=即x=1時(shí),x+有最小值,最小值為2.
請(qǐng)根據(jù)閱讀材料解答下列問(wèn)題
(1)若x>0,函數(shù)y=2x+,當(dāng)x為何值時(shí),函數(shù)有最小值,并求出其最小值.
(2)當(dāng)x>0時(shí),式子x2+1+≥2成立嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】勾股定理是人類最偉大的科學(xué)發(fā)現(xiàn)之一,在我國(guó)古算書《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出( )
A.直角三角形的面積
B.最大正方形的面積
C.較小兩個(gè)正方形重疊部分的面積
D.最大正方形與直角三角形的面積和
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AC,BD相交于點(diǎn)O,O是AC的中點(diǎn),AD∥BC.
(1)求證:四邊形ABCD是平行四邊形
(2)若AC⊥BD,且AB=4,則四邊形ABCD的周長(zhǎng)為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com