【題目】如圖所示,以的斜邊為邊,在的同側(cè)作正方形,交于點(diǎn),連接.若,則________

【答案】

【解析】

AC上截取CG=AB=4,連接OG,根據(jù)三角形內(nèi)角和定理推出∠ABO=ACO,進(jìn)而證出△BAO≌△CGO,推出OA=OG=,∠AOB=COG,得出△AOG是等腰直角三角形,再結(jié)合勾股定理計(jì)算即可得出答案.

AC上截取CG=AB=4,連接OG

∵四邊形BCEF是正方形,∠BAC=90°

OB=OC,∠BAC=BOC=90°

∴∠ABO=ACO

BA=CG,∠ABO=ACO,OB=OC

∴△BAO≌△CGO

OA=OG=,∠AOB=COG

∵∠BOC=COG+BOG=90°

∴∠AOG=AOB+BOG=90°,即△AOG是等腰直角三角形

,

AC=AG+CG=12,

,

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)y1=x+b的圖象l與二次函數(shù)y2=x2+mx+b的圖象C′都經(jīng)過(guò)點(diǎn)B0,1)和點(diǎn)C,且圖象C′過(guò)點(diǎn)A2,0).

1)求二次函數(shù)的最大值;

2)設(shè)使y2y1成立的x取值的所有整數(shù)和為s,若s是關(guān)于x的方程=0的根,求a的值;

3)若點(diǎn)F、G在圖象C′上,長(zhǎng)度為的線段DE在線段BC上移動(dòng),EFDG始終平行于y軸,當(dāng)四邊形DEFG的面積最大時(shí),在x軸上求點(diǎn)P,使PD+PE最小,求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】萬(wàn)州某企業(yè)捐資購(gòu)買了一批重120噸的物資支援某貧困鄉(xiāng)鎮(zhèn),現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運(yùn)載能力和運(yùn)費(fèi)如下(假設(shè)每輛車均滿載):甲載重5噸,運(yùn)費(fèi)400元/車,乙載重8噸,運(yùn)費(fèi)500元/車,丙載重10噸,運(yùn)費(fèi)600元/車,該公司計(jì)劃用甲、乙、丙三種車型同時(shí)參與運(yùn)送并完成任務(wù),已知它們的總輛數(shù)為15輛,要使費(fèi)用最省,所使用的甲、乙、丙三種車型的輛數(shù)分別是______。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷售一批小家電,平均每天可售出20臺(tái),每臺(tái)盈利40元.為了去庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.經(jīng)調(diào)查發(fā)現(xiàn),在一定范圍內(nèi),小家電的單價(jià)每降5元,商場(chǎng)平均每天可多售出10臺(tái).

1)若將這批小家電的單價(jià)降低x元,則每天的銷售量是______臺(tái)(用含x的代數(shù)式表示);

2)如果商場(chǎng)通過(guò)銷售這批小家電每天要盈利1250元,那么單價(jià)應(yīng)降多少元?

3)若這批小家電的單價(jià)有三種降價(jià)方式:降價(jià)10元、降價(jià)20元、降價(jià)30元,如果你是商場(chǎng)經(jīng)理,你準(zhǔn)備采取哪種降價(jià)方式?說(shuō)說(shuō)理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】統(tǒng)計(jì)七年級(jí)部分同學(xué)的跳高測(cè)試成績(jī),得到如下頻率直方圖(每組含前一個(gè)邊界值,不含后一個(gè)邊界值).

1)參加測(cè)試的總?cè)藬?shù)是多少人?

2)組距為多少?

3)跳高成績(jī)?cè)?/span>(含)以上的有多少人?占總?cè)藬?shù)的百分之幾?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“中華人民共和國(guó)道路交通管理?xiàng)l例”規(guī)定:小汽車在城街路上行駛速度不得超過(guò)70千米小時(shí),如圖,一輛小汽車在一條城市街路上直道行駛,某一時(shí)刻剛好行駛到路面對(duì)車速檢測(cè)儀A的正前方60米處的C點(diǎn),過(guò)了5秒后,測(cè)得小汽車所在的B點(diǎn)與車速檢測(cè)儀A之間的距離為100米.

BC間的距離;這輛小汽車超速了嗎?請(qǐng)說(shuō)明理由.

【答案】這輛小汽車沒(méi)有超速.

【解析】

(1)根據(jù)勾股定理求出BC的長(zhǎng);
(2)直接求出小汽車的時(shí)速,進(jìn)行比較得出答案.

(1)RtABC中,AC60 m,

AB100 m,且AB為斜邊,根據(jù)勾股定理,得BC80 m.

(2)這輛小汽車沒(méi)有超速.

理由:∵80÷516(m/s),

16 m/s57.6 km/h,57.6<70,

∴這輛小汽車沒(méi)有超速.

【點(diǎn)睛】

考查勾股定理的應(yīng)用,熟練掌握勾股定理是解題的關(guān)鍵.

型】解答
結(jié)束】
19

【題目】已知:如圖,線段ACBD相交于點(diǎn)G,連接ABCD,ECD上一點(diǎn),FDG上一點(diǎn),,且

求證:,,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:基本不等式a0,b0),當(dāng)且僅當(dāng)ab時(shí),等號(hào)成立.其中我們把叫做正數(shù)a、b的算術(shù)平均數(shù),叫做正數(shù)a、b的幾何平均數(shù),它是解決最大(。┲祮(wèn)題的有力工具.

例如:在x0的條件下,當(dāng)x為何值時(shí),x+有最小值,最小值是多少?

解:∵x00即是x+2

x+2

當(dāng)且僅當(dāng)xx1時(shí),x+有最小值,最小值為2

請(qǐng)根據(jù)閱讀材料解答下列問(wèn)題

1)若x0,函數(shù)y2x+,當(dāng)x為何值時(shí),函數(shù)有最小值,并求出其最小值.

2)當(dāng)x0時(shí),式子x2+1+2成立嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】勾股定理是人類最偉大的科學(xué)發(fā)現(xiàn)之一,在我國(guó)古算書《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出(

A.直角三角形的面積

B.最大正方形的面積

C.較小兩個(gè)正方形重疊部分的面積

D.最大正方形與直角三角形的面積和

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AC,BD相交于點(diǎn)O,OAC的中點(diǎn),AD∥BC.

1)求證:四邊形ABCD是平行四邊形

2)若AC⊥BD,且AB=4,則四邊形ABCD的周長(zhǎng)為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案