如圖,P為邊長為2的正三角形中任意一點,連接PA、PB、P C,過P點分別做三邊的垂線,垂足分別為D、E、F,則PD+PE+PF=    ;陰影部分的面積為   
【答案】分析:(1)求出等邊三角形的高,再根據(jù)△ABC的面積等于△PAB、△PBC、△PAC三個三角形面積的和,列式并整理即可得到PD+PE+PF等于三角形的高;
(2)因為點P是三角形內任意一點,所以當點P為三角形的中心時,陰影部分的面積等于三角形面積的一半,求出△ABC的面積,即可得到陰影部分的面積.
解答:解:(1)∵正三角形的邊長為2,
∴高為2×sin60°=
∴S△ABC=×2×=,
∵PD、PE、PF分別為BC、AC、AB邊上的高,
∴S△PBC=BC•PD,S△PAC=AC•PE,S△PAB=AB•PF,
∵AB=BC=AC,
∴S△PBC+S△PAC+S△PAB=BC•PD+AC•PE+AB•PF=×2(PD+PE+PF)=PD+PE+PF,
∵S△ABC=S△PBC+S△PAC+S△PAB,
∴PD+PE+PF=;

(2)∵點P是三角形內任意一點,
∴當點P是△ABC的中心時,陰影部分的面積等于△ABC面積的一半,
即陰影部分的面積為S△ABC=
故答案為:,
點評:本題主要利用等邊三角形三邊相等的性質和三角形的面積等于被分成的三個三角形的面積的和求解;第二問體現(xiàn)了數(shù)學問題中由一般到特殊的解題思想.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

某班甲、乙、丙三位同學進行了一次用正方形紙片折疊探究相關數(shù)學問題的課題學習活動.
活動情境:
如圖2,將邊長為8cm的正方形紙片ABCD沿EG折疊(折痕EG分別與AB、DC交于點E、G),使點B落在AD邊上的點 F處,F(xiàn)N與DC交于點M處,連接BF與EG交于點P.
所得結論:
當點F與AD的中點重合時:(如圖1)甲、乙、丙三位同學各得到如精英家教網(wǎng)下一個正確結論(或結果):
甲:△AEF的邊AE=
 
cm,EF=
 
cm;
乙:△FDM的周長為16cm;
丙:EG=BF.
你的任務:
(1)填充甲同學所得結果中的數(shù)據(jù);
(2)寫出在乙同學所得結果的求解過程;
(3)當點F在AD邊上除點A、D外的任何一處(如圖2)時:
①試問乙同學的結果是否發(fā)生變化?請證明你的結論;
②丙同學的結論還成立嗎?若不成立,請說明理由,若你認為成立,先證明EG=BF,再求出S(S為四邊形AEGD的面積)與x(AF=x)的函數(shù)關系式,并問當x為何值時,S最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2008年北京市通州區(qū)初三模擬檢測試卷及答案、數(shù)學試卷 題型:044

如圖,M是邊長為4的正方形AD邊的中點,動點P自A點起,由A→B→C→D勻速運動,直線MP掃過正方形所形成的面積為y,點P運動的路程為x,請解答下列問題:

(1)當x=1時,求y的值;

(2)就下列各種情況,求y與x之間的函數(shù)關系式;

①0≤x≤4;②4<x≤8;③8<x≤12;

(3)在給出的直角坐標系中,畫出(2)中函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某班甲、乙、丙三位同學進行了一次用正方形紙片折疊探究相關數(shù)學問題的課題學習活動.
活動情境:
如圖2,將邊長為8cm的正方形紙片ABCD沿EG折疊(折痕EG分別與AB、DC交于點E、G),使點B落在AD邊上的點 F處,F(xiàn)N與DC交于點M處,連接BF與EG交于點P.
所得結論:
當點F與AD的中點重合時:(如圖1)甲、乙、丙三位同學各得到如下一個正確結論(或結果):
甲:△AEF的邊AE=     cm,EF=    cm;
乙:△FDM的周長為16 cm;
丙:EG=BF.
你的任務:
【小題1】填充甲同學所得結果中的數(shù)據(jù);
【小題2】 寫出在乙同學所得結果的求解過程;
【小題3】當點F在AD邊上除點A、D外的任何一處(如圖2)時:
① 試問乙同學的結果是否發(fā)生變化?請證明你的結論;
② 丙同學的結論還成立嗎?若不成立,請說明理由,若你認為成立,先證明EG=BF,再求出S(S為四邊形AEGD的面積)與x(AF=x)的函數(shù)關系式,并問當x為何值時,S最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2012年江西省中等學校招生統(tǒng)一考試數(shù)學卷(一) 題型:解答題

某班甲、乙、丙三位同學進行了一次用正方形紙片折疊探究相關數(shù)學問題的課題學習活動.
活動情境:
如圖2,將邊長為8cm的正方形紙片ABCD沿EG折疊(折痕EG分別與AB、DC交于點E、G),使點B落在AD邊上的點 F處,F(xiàn)N與DC交于點M處,連接BF與EG交于點P.
所得結論:
當點F與AD的中點重合時:(如圖1)甲、乙、丙三位同學各得到如下一個正確結論(或結果):
甲:△AEF的邊AE=     cm,EF=    cm;
乙:△FDM的周長為16 cm;
丙:EG=BF.
你的任務:
【小題1】填充甲同學所得結果中的數(shù)據(jù);
【小題2】 寫出在乙同學所得結果的求解過程;
【小題3】當點F在AD邊上除點A、D外的任何一處(如圖2)時:
① 試問乙同學的結果是否發(fā)生變化?請證明你的結論;
② 丙同學的結論還成立嗎?若不成立,請說明理由,若你認為成立,先證明EG=BF,再求出S(S為四邊形AEGD的面積)與x(AF=x)的函數(shù)關系式,并問當x為何值時,S最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某班甲、乙、丙三位同學進行了一次用正方形紙片折疊探究相關數(shù)學問題的課題學習活動.
活動情境:
如圖2,將邊長為8cm的正方形紙片ABCD沿EG折疊(折痕EG分別與AB、DC交于點E、G),使點B落在AD邊上的點 F處,F(xiàn)N與DC交于點M處,連接BF與EG交于點P.
所得結論:
當點F與AD的中點重合時:(如圖1)甲、乙、丙三位同學各得到如下一個正確結論(或結果):
甲:△AEF的邊AE=______cm,EF=______cm;
乙:△FDM的周長為16cm;
丙:EG=BF.
你的任務:
(1)填充甲同學所得結果中的數(shù)據(jù);
(2)寫出在乙同學所得結果的求解過程;
(3)當點F在AD邊上除點A、D外的任何一處(如圖2)時:
①試問乙同學的結果是否發(fā)生變化?請證明你的結論;
②丙同學的結論還成立嗎?若不成立,請說明理由,若你認為成立,先證明EG=BF,再求出S(S為四邊形AEGD的面積)與x(AF=x)的函數(shù)關系式,并問當x為何值時,S最大?最大值是多少?

查看答案和解析>>

同步練習冊答案