Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以點C為圓心,2.5cm為半徑作⊙C.則線段AB的中點D與⊙C的位置關(guān)系是( )
A.D在⊙C上
B.D在⊙C外
C.D在⊙C內(nèi)
D.不能判斷
【答案】分析:要確定點與圓的位置關(guān)系,主要確定點與圓心的距離與半徑的大小關(guān)系,本題可由勾股定理等性質(zhì)算出點與圓心的距離d,則d>r時,點在圓外;當(dāng)d=r時,點在圓上;當(dāng)d<r時,點在圓內(nèi).
解答:解:由勾股定理,得
AB===5(cm),
∵CD是AB邊上的中線,
∴CD=AB=2.5(cm),
∴CD=2.5cm=⊙C的半徑,
∴點D在⊙C上.
故選A.
點評:本題考查了對點與圓的位置關(guān)系的判斷.關(guān)鍵要記住若半徑為r,點到圓心的距離為d,則有:當(dāng)d>r時,點在圓外;當(dāng)d=r時,點在圓上,當(dāng)d<r時,點在圓內(nèi).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足為D,交AB于點E.又點F在DE的精英家教網(wǎng)延長線上,且AF=CE.求證:四邊形ACEF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠BAC=90°,點D、E、F分別是三邊的中點,且CF=3cm,則DE=
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,AC⊥BC,CD⊥AB于D,AC=8,BC=6,則AD=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在等腰Rt△ABC中,∠C=90°,正方形DEFG的頂點D在邊AC上,點E、F在邊AB上,精英家教網(wǎng)點G在邊BC上.
(1)求證:AE=BF;
(2)若BC=
2
cm,求正方形DEFG的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,∠C=90°,D為AB的中點,DE⊥AB,AB=20,AC=12,則四邊形ADEC的面積為
 

查看答案和解析>>

同步練習(xí)冊答案