【題目】如圖,頂點(diǎn)為A,1)的拋物線經(jīng)過坐標(biāo)原點(diǎn)O,與x軸交于點(diǎn)B

(1)求拋物線對應(yīng)的二次函數(shù)的表達(dá)式;

(2)過BOA的平行線交y軸于點(diǎn)C,交拋物線于點(diǎn)D,求證:△OCD≌△OAB;

(3)在x軸上找一點(diǎn)P,使得△PCD的周長最小,求出P點(diǎn)的坐標(biāo).

【答案】1y=x2+x;(2見解析;(3)點(diǎn)P的坐標(biāo)為(﹣,0

【解析】試題分析:(1)用待定系數(shù)法求出拋物線解析式,(2)先求出直線OA對應(yīng)的一次函數(shù)的表達(dá)式為y=x.再求出直線BD的表達(dá)式為y=x2.最后求出交點(diǎn)坐標(biāo)C,D即可

3)先判斷出C'Dx軸的交點(diǎn)即為點(diǎn)P,它使得△PCD的周長最。鬏o助線判斷出△C'PO∽△C'DQ即可.

試題解析:(1∵拋物線頂點(diǎn)為A,1),設(shè)拋物線解析式為y=ax2+1將原點(diǎn)坐標(biāo)(0,0)在拋物線上,0=a2+1

a=∴拋物線的表達(dá)式為y=x2+x

2)令y=0, 0=x2+xx=0(舍),x=2

B點(diǎn)坐標(biāo)為:(2,0),設(shè)直線OA的表達(dá)式為y=kxA,1)在直線OA,k=1,k=,∴直線OA對應(yīng)的一次函數(shù)的表達(dá)式為y=x

BDAO設(shè)直線BD對應(yīng)的一次函數(shù)的表達(dá)式為y=x+bB20)在直線BD,0=×2+b,b=2,∴直線BD的表達(dá)式為y=x2

得交點(diǎn)D的坐標(biāo)為(﹣,3),x=0,y=2,C點(diǎn)的坐標(biāo)為(0,2),由勾股定理OA=2=OCAB=2=CD,OB=2=OD

在△OAB與△OCD, ,∴△OAB≌△OCD

3)點(diǎn)C關(guān)于x軸的對稱點(diǎn)C'的坐標(biāo)為(02),C'Dx軸的交點(diǎn)即為點(diǎn)P,它使得△PCD的周長最小.

過點(diǎn)DDQy,垂足為Q,PODQ∴△C'PO∽△C'DQ,,,PO=,∴點(diǎn)P的坐標(biāo)為(﹣0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(12),

1)寫出點(diǎn)AB的坐標(biāo):A , )、B ,

2)將△ABC先向左平移1個單位長度,再向上平移2個單位長度,得到△ABC′,畫出△ABC

3)寫出三個頂點(diǎn)坐標(biāo)A′( 、 )、B′( )、C

4)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家超市以相同的價格出售同樣的商品,為了吸引顧客,各自推出不同的優(yōu)惠方案:在甲超市累計購買商品超出300元之后,超出部分按原價8折優(yōu)惠;在乙超市累計購買商品超出200元之后,超出部分按原價8.5折優(yōu)惠.設(shè)顧客預(yù)計累計購物元().

(1)請用含的代數(shù)式分別表示顧客在兩家超市購物所付的費(fèi)用;

(2)李明準(zhǔn)備購買500元的商品,你認(rèn)為他應(yīng)該去哪家超市?請說明理由;

(3)計算一下,李明購買多少元的商品時,到兩家超市購物所付的費(fèi)用一樣?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵市民節(jié)約用水,某市水費(fèi)實(shí)行分段計費(fèi)制,每戶每月用水量在規(guī)定用量及以下的部分收費(fèi)標(biāo)準(zhǔn)相同,超出規(guī)定用量的部分收費(fèi)標(biāo)準(zhǔn)相同.例如:若規(guī)定用量為10噸,每月用水量不超過10噸按1.5/噸收費(fèi),超出10噸的部分按2/噸收費(fèi),則某戶居民一個月用水8噸,則應(yīng)繳水費(fèi):8×1.5=12(元);某戶居民一個月用水13噸,則應(yīng)繳水費(fèi):10×1.5+(13﹣10)×2=21(元).

表是小明家14月份用水量和繳納水費(fèi)情況,根據(jù)表格提供的數(shù)據(jù),回答:

月份

用水量(噸)

6

7

12

15

水費(fèi)(元)

12

14

28

37

(1)該市規(guī)定用水量為   噸,規(guī)定用量內(nèi)的收費(fèi)標(biāo)準(zhǔn)是   /噸,超過部分的收費(fèi)標(biāo)準(zhǔn)是   /噸.

(2)若小明家五月份用水20噸,則應(yīng)繳水費(fèi)   元.

(3)若小明家六月份應(yīng)繳水費(fèi)46元,則六月份他們家的用水量是多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列不等式組解應(yīng)用題:我校新校區(qū)級新生中有女生若干名需住校,已知我校新校區(qū)有若干間宿舍,每間住人,剩人無房;每間住人,有一間宿舍住不滿,問可能有多少間宿舍,多少名女生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,AB3,BC4.將△BCD沿對角線BD翻折得到△BED,BEAD于點(diǎn)O

1)判斷△BOD的形狀,并證明;(2)直接寫出線段OD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.

(1如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;

(2如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;

(3若改變(2中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年高中一年級學(xué)生開始,湖南省全面啟動高考綜合改革,學(xué)生學(xué)習(xí)完必修課程后,可以根據(jù)高校相關(guān)專業(yè)的選課要求和自身興趣、志向、優(yōu)勢,從思想政治、歷史、地理、物理、化學(xué)、生物6個科目中,自主選擇3個科目參加等級考試.學(xué)生已選物理,還想從思想政治、歷史、地理3個文科科目中選1科,再從化學(xué)、生物2個理科科目中選1.若他選思想政治、歷史、地理的可能性相等,選化學(xué)、生物的可能性相等,則選修地理和生物的概率為___________.

查看答案和解析>>

同步練習(xí)冊答案