2
分析:由題意可得BE=BC,∠AEB=∠FBC,易證明得直角三角形ABE與直角三角形FCB全等,得出BE=AE,再根據(jù)sin∠ABE=
,求出cos∠ABE的值,即可求出BE,再根據(jù)勾股定理求出AE,即可得出答案.
解答:∵CF⊥BE,
∴∠BFC=90°,
又∵AD∥BC,
∴∠AEB=∠FBC;
由于以點B為圓心,BC長為半徑畫弧,
∴BE=BC,
在△ABE與△FCB中,
,
∴△ABE≌△FCB(AAS),
∴BF=AE,
∵sin∠ABE=
,
∴cos∠ABE=
,
∵AB=6,
∴BE=
=
=10,
∵∠BAD=90°,
∴AE=
=
=8,
∵BF=AE,
∴BF=8,
∴EF=BE-BF=8-6=2.
故答案為:2.
點評:本題考查了解直角三角形,用到的知識點是解直角三角形、全等三角形的判定與性質(zhì)、勾股定理等,熟練掌握全等三角形的判定方法是解題的關(guān)鍵.