【題目】如圖,一座商場(chǎng)大樓的頂部豎直立有一個(gè)矩形廣告牌,小紅同學(xué)在地面上選擇了在條直線(xiàn)上的三點(diǎn)為樓底),,她在處測(cè)得廣告牌頂端的仰角為,在處測(cè)得商場(chǎng)大樓樓頂的仰角為米.已知廣告牌的高度米,求這座商場(chǎng)大樓的高度(,小紅的身高不計(jì),結(jié)果保留整數(shù)).
【答案】15米.
【解析】
因?yàn)樵?/span>E處的仰角是45°,所以可得AE=AB,設(shè)AB為x米,再結(jié)合D處的仰角60°以及題中的條件,進(jìn)而求解直角三角形即可.
設(shè)AB為x米,
∵在處測(cè)得商場(chǎng)大樓樓頂的仰角為
∴∠BEA=45°,
∴AE=AB=x,
∴AD=AE-DE=x-5,AC=BC+AB=2.35+x,
∵在處測(cè)得廣告牌頂端的仰角為,
∴∠CDA=60°,
∴AC=ADtan∠CDA= AD,
∴x+2.35= (x-5),
∴(-1)x=2.35+5 ,
解得,
答:商場(chǎng)大樓的高度AB約為15米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、P、B、C是⊙O上四點(diǎn),∠APC=∠CPB=60°.
(1)求證:△ABC是等邊三角形;
(2)連接OA,OB,當(dāng)點(diǎn)P位于什么位置時(shí),四邊形PBOA是菱形?并說(shuō)明理由;
(3)已知PA=a,PB=b,求PC的長(zhǎng)(用含a和b的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2011廣西崇左,18,3分)已知:二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論中:①abc>0;②2a+b<0;③a+b<m(am+b)(m≠1的實(shí)數(shù));④(a+c)2<b2;⑤a>1.其中正確的項(xiàng)是( )
A. ①⑤ B. ①②⑤ C. ②⑤ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校共有六個(gè)年級(jí),每個(gè)年級(jí) 10 個(gè)班,每個(gè)班約 40 名同學(xué).該校食堂共有 10 個(gè)窗口中午所有同學(xué)都在食堂用餐.經(jīng)了解,該校同學(xué)年齡分布在 12 歲(含 12 歲)到 18歲(含 18 歲)之間,平均年齡 15 歲.小天、小東兩位同學(xué),為了解全校同學(xué)對(duì)食堂各窗口餐食的喜愛(ài)情況,各自進(jìn)行了抽樣調(diào)查,并記錄了相應(yīng)同學(xué)的年齡,每人調(diào)查了 60 名同學(xué),將收集到的數(shù)據(jù)進(jìn)行了整理.
小天從初一年級(jí)每個(gè)班隨機(jī)抽取 6 名同學(xué)進(jìn)行調(diào)查,繪制統(tǒng)計(jì)圖表如下:
小東從全校每個(gè)班隨機(jī)抽取 1 名同學(xué)進(jìn)行調(diào)查,繪制統(tǒng)計(jì)圖表如下:
根據(jù)以上材料回答問(wèn)題:
(1)寫(xiě)出圖 2 中 m 的值 ;
(2)小天、小東兩人中,哪個(gè)同學(xué)抽樣調(diào)查的數(shù)據(jù)能較好地反映出該校同學(xué)對(duì)各窗口餐食的喜愛(ài)情況,并簡(jiǎn)要說(shuō)明另一名同學(xué)調(diào)查的不足之處;
(3)為使每個(gè)同學(xué)在中午盡量吃到自己喜愛(ài)的餐食,學(xué)校餐食管理部門(mén)應(yīng)為 窗口盡 量多的分配工作人員,理由為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等邊△ABC中,CD為中線(xiàn),點(diǎn)Q在線(xiàn)段CD上運(yùn)動(dòng),將線(xiàn)段QA繞點(diǎn)Q順時(shí)針旋轉(zhuǎn),使得點(diǎn)A的對(duì)應(yīng)點(diǎn)E落在射線(xiàn)BC上,連接BQ,設(shè)∠DAQ=α(0°<α<60°且α≠30°).
(1)當(dāng)0°<α<30°時(shí),
①在圖1中依題意畫(huà)出圖形,并求∠BQE(用含α的式子表示);
②探究線(xiàn)段CE,AC,CQ之間的數(shù)量關(guān)系,并加以證明;
(2)當(dāng)30°<α<60°時(shí),直接寫(xiě)出線(xiàn)段CE,AC,CQ之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形中,,對(duì)角線(xiàn)交于點(diǎn),點(diǎn)在線(xiàn)段上,且,將射線(xiàn)繞點(diǎn)逆時(shí)針轉(zhuǎn),交于點(diǎn), 則的長(zhǎng)為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從一塊半徑為的圓形鐵皮上剪出一個(gè)圓心角是的扇形,則此扇形圍成的圓錐的側(cè)面積為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】北中環(huán)橋是省城太原的一座跨汾河大橋(如圖1),它由五個(gè)高度不同,跨徑也不同的拋物線(xiàn)型鋼拱通過(guò)吊橋,拉鎖與主梁相連,最高的鋼拱如圖2所示,此鋼拱(近似看成二次函數(shù)的圖象-拋物線(xiàn))在同一豎直平面內(nèi),與拱腳所在的水平面相交于A,B兩點(diǎn),拱高為78米(即最高點(diǎn)O到AB的距離為78米),跨徑為90米(即AB=90米),以最高點(diǎn)O為坐標(biāo)原點(diǎn),以平行于AB的直線(xiàn)為軸建立平面直角坐標(biāo)系,則此拋物線(xiàn)鋼拱的函數(shù)表達(dá)式為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C在以AB為直徑的⊙O上,BD與過(guò)點(diǎn)C的切線(xiàn)垂直于點(diǎn)D,BD與⊙O交于點(diǎn)E.
(1)求證:BC平分∠DBA;
(2)連接AE和AC,若cos∠ABD=,OA=m,請(qǐng)寫(xiě)出求四邊形AEDC面積的思路.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com