【題目】為了解某區(qū)九年級學生身體素質(zhì)情況,該區(qū)從全區(qū)九年級學生中隨機抽取了部分學生進行了一次體育考試科目測試(把測試結(jié)果分為四個等級:A級:優(yōu)秀:B級:良好;C級:及格;D級:不及格),并將測試結(jié)果繪成了如圖兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)本次抽樣測試的學生是;
(2)求圖1中∠α的度數(shù)是°,把圖2條形統(tǒng)計圖補充完整;
(3)該區(qū)九年級有學生3500名,如果全部參加這次體育科目測試,請估計不及格的人數(shù)為

【答案】
(1)40
(2)144
(3)175
【解析】解:(1)本次抽樣的人數(shù)是14÷35%=40(人), 故答案是:40;
2)∠α= ×360=144°,
C級的人數(shù)是40﹣16﹣14﹣2=8(人),
故答案是:144.
;
3)估計不及格的人數(shù)是3500× =175(人),
故答案是:175.
(1)根據(jù)B級的人數(shù)除以B級所占的百分比,可得抽測的人數(shù);(2)根據(jù)A級的人數(shù)除以抽測的人數(shù),可得A級人數(shù)所占抽測人數(shù)的百分比,根據(jù)圓周角乘以A級人數(shù)所占抽測人數(shù)的百分比,可得A級的扇形的圓心角,根據(jù)有理數(shù)的減法,可得C級抽測的人數(shù),然后補出條形統(tǒng)計圖;(3)根據(jù)D級抽測的人數(shù)除以抽測的總?cè)藬?shù),可得D級所占抽測人數(shù)的百分比,根據(jù)八年級的人數(shù)乘以D級所占抽測人數(shù)的百分比,可得答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各題
(1)計算:(﹣1)3﹣( 2× +6×|﹣ |
(2)化簡并求值:( )÷ ,其中a=1,b=2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AD∥BC,AB⊥AD,點E,點F分別在射線AD,射線BC上.若點E與點B關(guān)于AC對稱,點E與點F關(guān)于BD對稱,AC與BD相交于點G,則(
A.1+tan∠ADB=
B.2BC=5CF
C.∠AEB+22°=∠DEF
D.4cos∠AGB=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A(2,2)關(guān)于直線y=k(k>0)的對稱點恰好落在x軸的正半軸上,則k的值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,點C在半圓O上,AB=5cm,AC=4cm.D是弧BC上的一個動點(含端點B,不含端點C),連接AD,過點C作CE⊥AD于E,連接BE,在點D移動的過程中,BE的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示,從邊長為a的正方形紙片中剪去一個邊長為b的小正方形,再沿著線段AB剪開,把剪成的兩張紙拼成如圖2的等腰梯形,
(1)設(shè)圖1中陰影部分面積為S1 , 圖2中陰影部分面積為S2 , 請直接用含a、b的代數(shù)式表示S1和S2
(2)請寫出上述過程所揭示的乘法公式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明合作學習小組在探究旋轉(zhuǎn)、平移變換.如圖△ABC,DEF均為等腰直角三角形,各頂點坐標分別為A(1,1),B(2,2),C(2,1),D( ,0),E(2 ,0),F(xiàn)( ,﹣ ).

(1)他們將△ABC繞C點按順時針方向旋轉(zhuǎn)45°得到△A1B1C1 . 請你寫出點A1 , B1的坐標,并判斷A1C和DF的位置關(guān)系;
(2)他們將△ABC繞原點按順時針方向旋轉(zhuǎn)45°,發(fā)現(xiàn)旋轉(zhuǎn)后的三角形恰好有兩個頂點落在拋物線y=2 x2+bx+c上,請你求出符合條件的拋物線解析式;
(3)他們繼續(xù)探究,發(fā)現(xiàn)將△ABC繞某個點旋轉(zhuǎn)45°,若旋轉(zhuǎn)后的三角形恰好有兩個頂點落在拋物線y=x2上,則可求出旋轉(zhuǎn)后三角形的直角頂點P的坐標,請你直接寫出點P的所有坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為美化校園,計劃對面積為1800m2的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400 m2區(qū)域的綠化時,甲隊比乙隊少用4.

1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2

2)若學校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應(yīng)安排甲隊工作多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一張圓心角為45°的扇形紙板剪得一個邊長為1的正方形,則扇形紙板的面積是cm2(結(jié)果保留π)

查看答案和解析>>

同步練習冊答案