如圖所示,已知⊙O1和⊙O2的半徑分別為5和
13
,它們的公共弦AB=6,求O1O2的長.
連接O1A,O2A,
O1C=
O1A2-AC2
=4,O2C=
13-32
=2,
∴O1O2=4+2=6.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB與⊙O相切于點B,AO的延長線交⊙O于點C,連接BC,若∠A=36°,則∠C=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,∠BAC的平分線AD交△ABC的外接圓⊙O于點E,交BC于點D,過點E作⊙O的切線交AB的延長線于點F,若AD=3
3
,DE=
3

求證:
(1)EFBC;
(2)AF=2EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是半圓的直徑,O是圓心,C是AB延長線上一點,CD切半圓于D,DE⊥AB于E.已知AE:EB=4:1,CD=2,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(原創(chuàng)題)如圖所示,將一根直徑為4m的空心水泥圓柱,在其下方放入兩根半徑為0.5m圓木,當(dāng)空心水泥圓柱與圓木相切于A,B兩點,且∠AOB=60°,求空心水泥柱最低點距地面多高(精確到0.01m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,在△ABC中,∠C=90°,AB=10,AC=6,⊙O1與⊙O2是△ABC內(nèi)互相外切的等圓,且分別與∠A,∠B的兩邊相切,則這個等圓的半徑的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知圓心為A,B,C的三個圓彼此相切,且均與直線l相切.若⊙A,⊙B,⊙C的半徑分別為a,b,c(0<c<a<b),則a,b,c一定滿足的關(guān)系式為( 。
A.2b=a+cB.
b
=
a
+
c
C.
1
c
=
1
a
+
1
b
D.
1
c
=
1
a
+
1
b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

“生活處處皆學(xué)問”,眼鏡鏡片所在的兩圓的位置關(guān)系是(  )
A.外離B.外切C.內(nèi)含D.內(nèi)切

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PQ=10,以PQ為直徑的圓與一個以20為半徑的⊙O內(nèi)切于點P,與正方形ABCD切于點Q,其中A、B兩點在⊙O上.若AB=m+
n
,其中m、n是整數(shù),求m+n的值.

查看答案和解析>>

同步練習(xí)冊答案