若a+b+c=0,且a>b>c,以下結(jié)論:
①a>0,c>0;
②關(guān)于x的方程ax+b+c=0的解為x=1;
③a2=(b+c)2
數(shù)學(xué)公式的值為0或2;
⑤在數(shù)軸上點(diǎn)A、B、C表示數(shù)a、b、c,若b<0,則線段AB與線段BC的大小關(guān)系是AB>BC.
其中正確的結(jié)論是________(填寫(xiě)正確結(jié)論的序號(hào)).

②③⑤
分析:根據(jù)a+b+c=0,且a>b>c推出a>0,c<0,即可判斷①;
求出a=-(b+c),ax=-(b+c),方程的兩邊都除以a即可判斷②;
根據(jù)a=-(b+c)兩邊平方即可判斷③;
分為兩種情況:當(dāng)b>0,a>0,c<0時(shí),去掉絕對(duì)值符號(hào)得出+++,求出結(jié)果,當(dāng)b<0,a>0,c<0時(shí),去掉絕對(duì)值符號(hào)得出+++求出結(jié)果,即可判斷④;
求出|a-b|>|c-b|,根據(jù)AB=|a-b|,BC=|b-c|即可判斷⑤.
解答:∵a+b+c=0,且a>b>c,
∴a>0,c<0,∴①錯(cuò)誤;
∵a+b+c=0,a>b>c,
∴a>0,a=-(b+c),
∵ax+b+c=0,
∴ax=-(b+c),
∴x=1,∴②正確;
∵a=-(b+c),
∴兩邊平方得:a2=(b+c)2,∴③正確;
∵a>0,c<0,
∴分為兩種情況:
當(dāng)b>0時(shí),=+++=1+1+(-1)+(-1)=0;
當(dāng)b<0時(shí),=+++=1+(-1)+(-1)+1=0;
∴④錯(cuò)誤;
∵a>c,
∴a-b>c-b,
∵a>b>c,
∴a-b>0,b-c>0,
∵|c-b|=|b-c|,
∴|a-b|>|c-b|,
∵AB=|a-b|,BC=|b-c|,
∴AB>BC,∴⑤正確;
即正確的結(jié)論有②③⑤,
故答案為:②③⑤.
點(diǎn)評(píng):本題考查了比較兩線段的長(zhǎng),數(shù)軸,有理數(shù)的加法、除法、乘方,一元一次方程的解,絕對(duì)值等知識(shí)點(diǎn)的綜合運(yùn)用,題目比較典型,但是一道比較容易出錯(cuò)的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形ABCD是一塊需探明地下資源的土地,E是AB的中點(diǎn),EF∥AD交CD于點(diǎn)F,探測(cè)裝置(設(shè)為點(diǎn)P)從E出發(fā)沿EF前行時(shí),可探測(cè)的區(qū)域是以點(diǎn)P為中心,PA為半徑的一個(gè)圓(及其內(nèi)部).當(dāng)(探測(cè)精英家教網(wǎng)裝置)P到達(dá)點(diǎn)P0處時(shí),⊙P0與BC、EF、AD分別交于G、F、H點(diǎn).
(1)求證:FD=FC;
(2)指出并說(shuō)明CD與⊙P0的位置關(guān)系;
(3)若四邊形ABGH為正方形,且三角形DFH的面積為(2
2
-2)平方千米,當(dāng)(探測(cè)裝置)P從點(diǎn)P0出發(fā)繼續(xù)前行多少千米到達(dá)點(diǎn)P1處時(shí),A、B、C、D四點(diǎn)恰好在⊙P1上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•武漢模擬)如圖,折疊矩形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處.
(1)如圖1,若折痕AE=5
5
,且tan∠EFC=
3
4
,求矩形ABCD的周長(zhǎng);
(2)如圖2,在AD邊上截取DG=CF,連接GE,BD,相交于點(diǎn)H,求證:BD⊥GE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•豐臺(tái)區(qū)一模)如圖,在平面直角坐標(biāo)系xOy中,⊙C的圓心坐標(biāo)為(-2,-2),半徑為
2
.函數(shù)y=-x+2的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)P為直線AB上一動(dòng)點(diǎn).
(1)若△POA是等腰三角形,且點(diǎn)P不與點(diǎn)A、B重合,直接寫(xiě)出點(diǎn)P的坐標(biāo);
(2)當(dāng)直線PO與⊙C相切時(shí),求∠POA的度數(shù);
(3)當(dāng)直線PO與⊙C相交時(shí),設(shè)交點(diǎn)為E、F,點(diǎn)M為線段EF的中點(diǎn),令PO=t,MO=s,求s與t之間的函數(shù)關(guān)系式,并寫(xiě)出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若0°<α<45°,且sinαconα=
3
7
16
,則sinα=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在銳角△ABC中,AC是最短邊;以AC中點(diǎn)O為圓心,
1
2
AC長(zhǎng)為半徑作⊙O,交BC于E,過(guò)O作OD∥BC交⊙O于D,連接AE、AD、DC.
(1)求證:D是
AE
的中點(diǎn);
(2)求證:∠DAO=∠B+∠BAD;
(3)若
S△CEF
S△OCD
 =
1
2
,且AC=4,求CF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案