在平面直角坐標(biāo)系中,有一個(gè)矩形ABCD,四個(gè)頂點(diǎn)的坐標(biāo)分別為:A(4,0)、B(4,2)、C(8,2)、D(8,0),并且有兩個(gè)動(dòng)點(diǎn)P和Q.P從原點(diǎn)O出發(fā),沿x軸正方向運(yùn)動(dòng);Q從A點(diǎn)出發(fā),沿折線A-B-C-D方向在矩形的邊上運(yùn)動(dòng),且兩點(diǎn)的運(yùn)動(dòng)速度均為每秒2個(gè)單位.當(dāng)Q到達(dá)D點(diǎn)時(shí),P也隨之停止.設(shè)運(yùn)動(dòng)的時(shí)間為x.
(1)分別求出當(dāng)x=1和x=3時(shí),對(duì)應(yīng)的△OPQ的面積;
(2)設(shè)△OPQ的面積為y,分別求出不同時(shí)段,y關(guān)于x的函數(shù)解析式,注明自變量的取值范圍.并求出在整個(gè)運(yùn)動(dòng)過程中,△OPQ的面積的最大值;
(3)在P、Q運(yùn)動(dòng)過程中,是否存在兩個(gè)時(shí)刻x1和x2,使得構(gòu)成相應(yīng)的△OP1Q1和△OP2Q2相似?若存在,直接寫出這兩個(gè)時(shí)刻,并證明兩個(gè)三角形相似;若不存在,請(qǐng)說明理由.

(1)解:當(dāng)x=1時(shí),面積為:S=×(4-2)×2=2,
當(dāng)x=3時(shí),面積為S=×(3×2)×2=6,
答:當(dāng)x=1時(shí),△OPQ的面積是2,當(dāng)x=3時(shí),△OPQ的面積是6.

(2)當(dāng)0≤x≤1時(shí),y1=•2x•2x=2x2,
,y1=2x2,
同法可求:
當(dāng)1≤x≤3時(shí),y2=2x;
當(dāng)3≤x≤4時(shí),y3=-2x2+8x);
當(dāng)x=3時(shí),面積的最大值是6,
答:y1=2x2(0≤x≤1);y2=2x(1≤x≤3);y3=-2x2+8x(3≤x≤4).在整個(gè)運(yùn)動(dòng)過程中,△OPQ的面積的最大值是6.

(3)當(dāng)x1=1,x2=2時(shí),△OP1Q1和△OP2Q2相似.
因?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/211207.png' />;
所以:,
所以△OP1Q1和△OP2Q2相似.
分析:(1)根據(jù)面積公式即可求出答案;
(2)在運(yùn)動(dòng)過程中看P、Q的位置,根據(jù)面積公式計(jì)算即可;
(3)利用勾股定理求出線段長(zhǎng),根據(jù)三邊對(duì)應(yīng)成比例,兩三角形相似即可得出結(jié)論.
點(diǎn)評(píng):本題主要考查了二次函數(shù),矩形的性質(zhì),相似三角形的性質(zhì)和判定,三角形的面積,勾股定理等知識(shí)點(diǎn),綜合運(yùn)用性質(zhì)進(jìn)行計(jì)算是解此題的關(guān)鍵.本題綜合性比較強(qiáng),有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

28、在平面直角坐標(biāo)系中,點(diǎn)P到x軸的距離為8,到y(tǒng)軸的距離為6,且點(diǎn)P在第二象限,則點(diǎn)P坐標(biāo)為
(-6,8)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、在平面直角坐標(biāo)系中,點(diǎn)P1(a,-3)與點(diǎn)P2(4,b)關(guān)于y軸對(duì)稱,則a+b=
-7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,有A(2,3)、B(3,2)兩點(diǎn).
(1)請(qǐng)?jiān)偬砑右稽c(diǎn)C,求出圖象經(jīng)過A、B、C三點(diǎn)的函數(shù)關(guān)系式.
(2)反思第(1)小問,考慮有沒有更簡(jiǎn)捷的解題策略?請(qǐng)說出你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,開口向下的拋物線與x軸交于A、B兩點(diǎn),D是拋物線的頂點(diǎn),O為精英家教網(wǎng)坐標(biāo)原點(diǎn).A、B兩點(diǎn)的橫坐標(biāo)分別是方程x2-4x-12=0的兩根,且cos∠DAB=
2
2

(1)求拋物線的函數(shù)解析式;
(2)作AC⊥AD,AC交拋物線于點(diǎn)C,求點(diǎn)C的坐標(biāo)及直線AC的函數(shù)解析式;
(3)在(2)的條件下,在x軸上方的拋物線上是否存在一點(diǎn)P,使△APC的面積最大?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo)和△APC的最大面積;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、在平面直角坐標(biāo)系中,把一個(gè)圖形先繞著原點(diǎn)順時(shí)針旋轉(zhuǎn)的角度為θ,再以原點(diǎn)為位似中心,相似比為k得到一個(gè)新的圖形,我們把這個(gè)過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點(diǎn)O順時(shí)針旋轉(zhuǎn)的角度為90°,再以原點(diǎn)為位似中心,相似比為2得到一個(gè)新的圖形△A1B1C1,可以把這個(gè)過程記為【90°,2】變換.
(1)在圖中畫出所有符合要求的△A1B1C1
(2)若△OMN的頂點(diǎn)坐標(biāo)分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點(diǎn)M的對(duì)應(yīng)點(diǎn)M′的坐標(biāo)為(-1,-2),則θ=
0°(或360°的整數(shù)倍)
,k=
2

查看答案和解析>>

同步練習(xí)冊(cè)答案