【題目】1)問(wèn)題發(fā)現(xiàn):如圖1,在四邊形ABCD中,ABDC,EBC的中點(diǎn),若AEBAD的平分線,則AB,AD,DC之間的數(shù)量關(guān)系為_______

2)問(wèn)題探究:如圖2,在四邊形ABCD中,ABDC,EBC的中點(diǎn),點(diǎn)FDC的延長(zhǎng)線上一點(diǎn),若AEBAF的平分線,試探究AB,AF,CF之間的數(shù)量關(guān)系,并證明你的結(jié)論;

3)問(wèn)題解決:如圖3,ABCD,點(diǎn)E在線段BC上,且BE:EC=3:4.點(diǎn)F在線段AE上,且EFD =∠EAB,直接寫(xiě)出ABDF,CD之間的數(shù)量關(guān)系.

【答案】(1)AB+CD=AD;(2)詳見(jiàn)解析;(3AB=(CD+DF )

【解析】

1)結(jié)論:AB+CD=AD.只要證明△CEF≌△BEAAAS),推出AB=CF,再證明DA=DF即可解決問(wèn)題.

2)結(jié)論:AB=AF+CF.只要證明CEG≌△BEAAAS),推出AB=CG,再證明FA=FG即可解決問(wèn)題.

3)結(jié)論:AB=CD+DF).如圖3中,延長(zhǎng)AECD的延長(zhǎng)線于G.證明CEG∽△BEA,推出AB=CG,再證明DF=DG即可解決問(wèn)題.

1)結(jié)論:AB+CD=AD

理由:如圖1中,

ABCF,∴∠CFE=EAB

CE=EB,∠CEF=AEB,∴△CEF≌△BEAAAS),

AB=CF

AF平分∠DAB,∴∠DAF=EAB,

∵∠EAB=CFE,∴∠DAF=DFA,

AD=DF,

DF=DC+CF=CD+AB,

AB+CD=AD

故答案為: AB+CD=AD

2)結(jié)論:AB=AF+CF

延長(zhǎng)AEDC的延長(zhǎng)線于點(diǎn)G

ABCD, ∴ ∠EAB=∠G,B=∠BCG

EBC的中點(diǎn),BE=CE

∴ △ABE≌△GCE,AB=CG

AEBAF的平分線,

∴ ∠EAB=∠FAE, ∴ ∠G=∠FAE

AF=FG,CG=CF+FG= CF+AF

∴ AB=AF+CF

3)結(jié)論:AB=(CD+DF )

如圖3中,延長(zhǎng)AECD的延長(zhǎng)線于G

CGAB,

∴△CEG∽△BEA,

,

∵∠G=A,

AB=CG,

∵∠DFE=A

∴∠DFG=G,

DF=DG

CD+DF=CD+DG=CG,

AB=CD+DF).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,拋物線y=x2+bx+c經(jīng)過(guò)A、B兩點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(﹣1,0)、(0,﹣3).

(1)求拋物線的函數(shù)解析式;

(2)點(diǎn)E為拋物線的頂點(diǎn),點(diǎn)C為拋物線與x軸的另一交點(diǎn),點(diǎn)D為y軸上一點(diǎn),且DC=DE,求出點(diǎn)D的坐標(biāo);

(3)在第二問(wèn)的條件下,在直線DE上存在點(diǎn)P,使得以C、D、P為頂點(diǎn)的三角形與△DOC相似,請(qǐng)你直接寫(xiě)出所有滿足條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知A,B,CD四點(diǎn)的坐標(biāo)依次為(0,0),(6,2),(8,8),(2,6),若一次函數(shù)ymx6m+2m0)圖象將四邊形ABCD的面積分成13兩部分,則m的值為( 。

A. 4B. ,﹣5C. D. ,﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系內(nèi),A,Bx軸上兩點(diǎn),以AB為直徑的⊙My軸于C,D兩點(diǎn),C的中點(diǎn),弦AEy軸于點(diǎn)F,且點(diǎn)A的坐標(biāo)為(2,0),CD8

1)求⊙M的半徑;

2)動(dòng)點(diǎn)P在⊙M的圓周上運(yùn)動(dòng).

①如圖1,當(dāng)FP的長(zhǎng)度最大時(shí),點(diǎn)P記為P,在圖1中畫(huà)出點(diǎn)P0,并求出點(diǎn)P0橫坐標(biāo)a的值;

②如圖1,當(dāng)EP平分∠AEB時(shí),求EP的長(zhǎng)度;

③如圖2,過(guò)點(diǎn)D作⊙M的切線交x軸于點(diǎn)Q,當(dāng)點(diǎn)P與點(diǎn)A,B不重合時(shí),請(qǐng)證明為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解家長(zhǎng)和學(xué)生參與防溺水教育的情況,在本校學(xué)生中隨機(jī)抽取部分學(xué)生做調(diào)查,把調(diào)查的數(shù)據(jù)分為以下4類情形:A:僅學(xué)生自己參與;B:家長(zhǎng)與學(xué)生一起參與;C:僅家長(zhǎng)自己參與;D:家長(zhǎng)和學(xué)生都未參與;并把調(diào)查結(jié)果繪制成了以下兩種統(tǒng)計(jì)圖(不完整).

根據(jù)以上統(tǒng)計(jì)圖,解答下列問(wèn)題:

1)本次接受調(diào)查的學(xué)生共有_____人.

2)已知B類人數(shù)是D類人數(shù)的6倍.

補(bǔ)全條形統(tǒng)計(jì)圖;

求扇形統(tǒng)計(jì)圖中B類的圓心角度數(shù);

根據(jù)調(diào)查結(jié)果,估計(jì)該校2000名學(xué)生中家長(zhǎng)和學(xué)生都未參與的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于A3,0和B1,0兩點(diǎn),交y軸于點(diǎn)C0,3,點(diǎn)C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過(guò)點(diǎn)B、D

1求二次函數(shù)的解析式;

2根據(jù)圖象直接寫(xiě)出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍;

3若直線與y軸的交點(diǎn)為E,連結(jié)AD、AE,求ADE的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形中,,,邊上一點(diǎn),連接,將矩形沿折疊,頂點(diǎn)恰好落在邊上點(diǎn)處,延長(zhǎng)的延長(zhǎng)線于點(diǎn)

1)求線段的長(zhǎng);

2)如圖2,,分別是線段上的動(dòng)點(diǎn)(與端點(diǎn)不重合),且,設(shè),

①寫(xiě)出關(guān)于的函數(shù)解析式,并求出的最小值;

②是否存在這樣的點(diǎn),使是等腰三角形?若存在,請(qǐng)求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙OABC的外接圓,直線l與⊙O相切于點(diǎn)E,且lBC

1)求證:AE平分∠BAC;

2)作∠ABC的平分線BFAE于點(diǎn)F,求證:BEEF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB兩點(diǎn)分別在x軸和y軸的正半軸上,連接AB與反比例函數(shù)的圖象交于C、D兩點(diǎn).

(1)當(dāng)0A6,OB3,點(diǎn)D的橫坐標(biāo)為2時(shí),則k____,=_______.

(2)當(dāng)0Aa,OBb時(shí),請(qǐng)猜測(cè)ACBD之間的數(shù)量關(guān)系,并說(shuō)明理由.

(3)如圖,以D為頂點(diǎn)且過(guò)點(diǎn)O的拋物線分別交函數(shù)的圖像和x軸于點(diǎn)EF,連接CF,設(shè)=m..

①若∠AFC90°,則m的值為多少?

②若∠ACF90°,且m時(shí),請(qǐng)用含m的代數(shù)式表示tanBAO的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案